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Some history

• WMO International Workshop on Global Review of RCOFs (CIIFEN, 
Guayaquil, Ecuador, Sep 2017)  way forward towards the new 
generation of RCOFs should include the mainstreaming of OSF RCOF 
products with an expanded product portfolio

• 72nd WMO Executive Council (2020)  endorse a proposal on 
operationalization of OSFs and tailored products on sub-regional 
scales with country-level service delivery

• WMO requests production of “Guidance for MedCOF sub-region to 
enable operational production of objective seasonal forecasts” (2021)



Guidance on Operational Practices for Objective Seasonal 
Forecasting, WMO-No. 1246. 
https://library.wmo.int/doc_num.php?explnum_id=10314

Outline

1. Introduction to seasonal predictions
2. Components of a seasonal forecast system 
3. Seasonal forecast products
4. Guidance on good practices for developing objective 

seasonal forecasts
5. WMO infrastructure and resources for seasonal forecasts
6. Other sources of seasonal prediction products
7. Other aspects of seasonal predictions and variability
8. Examples of good practices currently followed at NMHSs, 

RCCs and RCOFs
9. Future prospects for seasonal and other long-range forecasts

Objective Seasonal Forecast (OSF):  
set of steps in a forecast procedure that are traceable, 
reproducible, and well documented and which 

allow quantification of forecast quality

https://library.wmo.int/doc_num.php?explnum_id=10314


Principles for OSF
• Follow a traceable, reproducible, and well-documented procedure (including model selection, bias correction, 

calibration and statistical downscaling) that is amenable to assessments of forecast quality (verification);

• Use dynamical climate models, including multi-model ensembles, as the primary basis for seasonal forecasts;

• Establish and maintain observational databases (including databases associated with reanalysis and other blended 
analysis products) of adequate quality, length of record and spatial resolution for verification, bias correction and 
calibration and to monitor drivers of seasonal predictability;

• Identify and monitor drivers of predictable climate variability and assess their representation and prediction skill in 
models;

• Ensure that forecasts are verified according to established standards, keep archives of past forecasts, and conduct 
post-season assessments;

• Provide forecast information together with historical performance (for example, skill and reliability);

• Use clear and non-technical language to communicate seasonal forecasts, including emphasizing the probabilistic 
nature and inherent uncertainty of seasonal forecasts;

• Collaborate across regions influenced by the same climate drivers in forecast production though mechanisms such as 
RCOFs;

• Provide seasonal forecasts as well as regular updates on a fixed operational schedule tailored to the applicable 
decision-making context;

• Establish user feedback and product upgrade mechanisms and support co-production of tailored products.



Recommended approach for producing 
operational objective SFs (WMO 2020) consist of:

• Select the appropriate models to be used. 

• Bias correction and calibration at the grid point 
level.

• Method for combination
• Discuss the first estimate (or guess), and if necessary 

and justified, alter the forecast if there are strong 
reasons for doing so.

• Keep a record of all the discussions conducted 
concerning altering the MME based forecast in order to 
build a traceable/documented forecasting process.

• Use local data, either station or gridded, to better 
understand the local climate and the statistical 
downscaling process



Select the appropriate models to be used

• Initial pool: WMO LRF MME (13 models), C3S MME (8 models) 

• Different models have different biases that influence their ability to predict the observed climate in light of varying 
climate situations and for various regions. For one climate situation and region, one model may be preferable; 
however, this same model may not be appropriate for use in other regions and seasons. Different hindcast periods 
may also influence the selection of the appropriate models. In this respect. Whereas the C3S MME has a relatively 
long common hindcast period (1993-2016), the WMO LRFMME has a wider range of hindcast periods which in 
principle may pose some problems to the selection of models.

• The selected models should share a minimum list of characteristics related to spatial/temporal resolution, minimum 
hindcast period, minimum ensemble size for hindcast and forecast, coupled atmosphere–ocean systems versus two-
tier systems, issuance time, etc. 

• The next set of criteria for selecting models is related to the regional performance of seasonal forecasting systems. 
A comparison of objective verification scores computed over a common hindcast period provides insight on the 
quality of different systems. Also the ability of models to simulate climate drivers, climate variability patterns and 
teleconnections that are relevant at a seasonal scale over the region of interest. This analysis should be conducted 
month by month as the relevant large-scale features and processes depend largely on seasons. Initially this analysis 
could be carried out for the 4 main seasons.



Initial pool of SFSs

C3S WMO LRF MME



Metrics for models selection

Selection based on:
• hindcast
• current forecast

If based on hindcast, selection should be carried 
out month by month as the relevant large-scale 
features and processes depend largely on seasons



Bias correction and calibration at the grid point level

• Bias correction  adjusts modelled climate to observed climate without 
reference to prediction quality or skill, in other words, without pairing 
hindcasts and observations

• Calibrationmodify forecast values to optimize skill. It requires 
consideration of paired hindcast and observed values. 

A primary purpose of calibration is to improve the properties of probabilistic forecasts, especially their reliability. 
A typical approach to calibration is first to fit hindcast ensemble values to a parametric probability distribution, 
such as the normal distribution, which by itself provides an improved estimate of the forecast PDF, and then to 
adjust the parameters of that distribution to optimize a probabilistic forecast quality measure. 

• Combining uncalibrated forecasts from multiple models also tends to 
improve reliability and may make probabilistic calibration less crucial than 
for individual models. Such an approach is applied in WMO LC-LRFMME. 

• As the multi-model probabilistic forecasts based on uncalibrated individual 
models improve the reliability of individual models, this step could be 
skipped in an initial implementation aiming at speeding up the operations. 



Combining seasonal forecasts from multiple inputs

• Combining predictions from different and complementary models helps improve our predictive 
ability.

• Over a single region, different models have different skills. Differences in the levels of model skills 
may suggest that different models should be weighted differently when combined into a single 
prediction. However, because of short hindcast periods, different authors have reported that 
equal weighting generally performs better than the use of unequal weights. 

• The simplest method of blending is to take a simple average of the values predicted by each 
system (for deterministic forecasts) and an average of predicted probabilities (if forecasts are 
probabilistic). 
• In WMO LC-LRFMME weighting in proportion to the square root of the ensemble size. 
• In NMME weighting individual model probabilities proportionally to the ensemble size.

• Together with dynamical seasonal prediction systems, empirical prediction systems can also be 
used to improve model combinations 

• Given the simplicity of blending by averaging among the selected models, it seems 
recommendable to start the operations using this approach and at the same time progress with 
the development of a more advanced weighting method.



Statistical and dynamical downscaling of real-time forecasts

• Dynamical downscaling is unable to enhance forecast skill over regions for which the global 
dynamical model used to force the regional model demonstrates poor skill. In contrast, statistical 
methods involving spatial pattern correction can potentially improve regional skill in cases 
where skill in representing climate variability patterns is degraded by model errors.

• Given the fact that high resolution and quality observational data are available over MedCOF
domain -at over some part of the domain-, statistical downscaling can be performed to provide 
seasonal forecasts for those locations not resolved by the coarse resolution model. In general, 
downscaling may be worthwhile in instances where the forecast being downscaled has skill and 
there is some reason to expect that downscaling will further add to skill (and will provide further 
details).

• A general property of dynamical downscaling is that while the downscaled forecast fields show 
increased detail, particularly in topographically complex regions, dynamical downscaling does not 
correct large-scale errors in global model forecasts. Therefore, also due to the very demanding 
computing resources for its application, dynamical downscaling can in a first instance be 
disregarded as an alternative downscaling technique.

• Many statistical downscaling techniques have been developed to derive local information from 
large-scale GCMs outputs  Select simple SDS (from MEDSCOPE CSTools)



Current versus new approaches to SF
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