From climate data to (useful) information: the **ENEA** activities on climate services

Alessandro Dell'Aquila, Matteo De Felice ENEA, Climate Modeling Laboratory

Energy & Climate

- Link between Energy and Climate is strengthening for several reasons:
- 1. Diffusion of Renewable Energies
- 2. Widespread use of air conditioning
- 3. Necessity of improving efficiency/reliability of power networks (electric utilities)

ENEA contribution to climate services for energy

1.An Italian Experience: the ENEA-TERNA collaboration2.An European initiative: the Copernicus ECEM project

The ENEA-TERNA collaboration Climate & TSO

Transmission System Operators (TSOs) are responsible for:

- ensuring the long-term ability of the system to meet demands for electricity
- contributing to security of supply
- managing electricity flows on the system

EUR-Lex - Internal market in electricity - 2009/72/EC

	Weather Information	Climate Information		
Electricity Demand	Analysis of past events	Demand forecasting from 1 to 3 months (seasonal)		
Renewable Energy Production	Short-term forecasting	Seasonal Forecasting		

en

Reliable Sustainable Connected

The ENEA-TERNA collaboration Supply: solar power

M. De Felice, M. Petitta, and P. M. Ruti, "Short-term predictability of photovoltaic production over Italy," Renewable Energy, vol. 80, pp. 197-204, 2015.

Seasonal-to-decadal climate Prediction for the improvement of European Climate Services

SPFCS

The ENEA-TERNA collaboration Going seasonal...

Short-term solar forecasting/prediction

About 112,000 results (0.10 sec)

 Seasonal solar forecasting/prediction

hic synt dracones

The ENEA-TERNA collaboration Electricity Demand

- Electricity demand sensitive to weather conditions
- Currently only climatological data are used for time-scales >14 days
- Demand affected by "human activities" (calendar effects) and economic trends
 - ...how it is affected by temperature
 - ...its predictability at short-time scales

M. De Felice, A. Alessandri, and P. M. Ruti, "Electricity Demand Forecasting over Italy: Potential Benefits using Numerical Weather Prediction models," Electric Power Systems Research, vol. 104, pp. 71-79, 2013.

Annual energy demand over Italy

The ENEA-TERNA collaboration Electricity Demand...

France reduced electricity export in August of 50% (EDF)

٠

The ENEA-TERNA collaboration Observe

The ENEA-TERNA collaboration Going seasonal

+ What will be the probability of having the demand above/below the <u>normal</u>?

Use of "statistical downscaling" of seasonal forecasts

 Interesting result: significant skill (BSS > 0.3) on some Italian regions with one-month of lead time

> De Felice M., Alessandri A., and F. Catalano, "Seasonal climate forecasts for medium-term electricity demand forecasting," Applied Energy, vol. 137, pp. 435-444, 2015

The ENEA-TERNA collaboration Seasonal Forecast

VAR_X MEM_Y PC_Z

The ENEA-TERNA collaboration **Probabilistic product for TERNA**

		Center (C	.)		South (S)
Year	Above normal?	May	April	Above normal?	May	April
1990	Yes	37.3%	33.3%	No	31.4%	33.3%
1991	No	23.5%	20%	No	25.5%	26.7%
1992	No	43.1%	46.7%	Yes	60.8%	46.7%
1993	No	13.7%	46.7%	No	35.3%	46.7%
1994	Yes	86.3%	33.3%	No	49%	33.3%
1995	No	29.4%	53.3%	Yes	15.7%	40%
1996	No	29.4%	40%	No	25.5%	46.7%
1997	No	39.2%	26.7%	Yes	60.8%	33.3%
1998	No	31.4%	33.3%	Yes	52.9%	46.7%
1999	No	5.9%	6.7%	No	0%	6.7%
2000	No	29.4%	6.7%	No	2%	0%
2001	No	23.5%	20%	No	2%	0%
2002	Yes	52.9%	26.7%	Yes	41.2%	20%
2003	Yes	68.6%	46.7%	Yes	94.1%	46.7%
2004	No	15.7%	53.3%	No	47.1%	46.7%
2005	Yes	33.3%	26.7%	No	49%	46.7%
2006	Yes	41.2%	73.3%	No	7.8%	53.3%
2007	No	13.7%	26.7%	No	27.5%	46.7%

Next summer demand

The C3S ECEM project

ECEM

- It is a **Copernicus Climate Change Services Project (C3S)** with the aim to enable the energy industry and policy makers to assess how well energy supply will meet demand in Europe over **different time horizons**
- Demand/Supply for historical/seasonal/climate change scenarios
- 2 stakeholders workshops
- Demonstrator for energy demand and supply (not only renewables) at national scale

European Climatic Energy Mixes

The C3S ECEM project Monthly Outlook

Italy (ENTSO-E data)

The C3S ECEM project Monthly Consumption

Modeled by using statistical Generalised Additive Model (GAM) with temperature

France - gam: Monthly load 2001-2014: cross-validation with K = 5

The C3S ECEM project Monthly hydro production in Norway

Norway - m5p: Monthly hydro CF 2001-2014: cross-validation with K = 20

 Modeled by using Regression Tree with precipitation as predictor

The C3S ECEM project Monthly wind production in UK

 Modeled by using Linear Model with wind speed as predictor

The C3S ECEM project

Demonstrator for energy demand and supply (not only renewables) at national scale

Climate predictions for Energy sector

- Large spread of time scales interested, from shorter to seasonal and longer
- For the Italian TSO TERNA our services is focused on seasonal forecasts, while ECEM project covers all the time scales
- In terms of expertise in energy sector with the use and exploitation of probabilistic forecasts the landscape is quite complex (generally high skill in Europe, lower in Italy)
- The main barriers identified are the difficulties in finding sectoral information, (i.e. difficult access to data).
 Capacity building issue

