

Seasonal prediction over the Euro-Mediterranean region

F. J. Doblas-Reyes, ICREA & IC3, Barcelona, Spain

MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

Climate time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

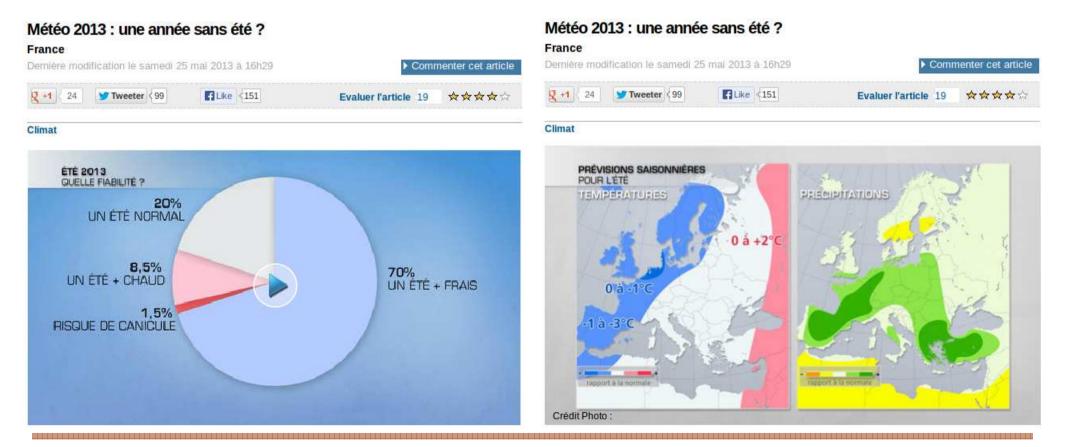
Meehl et al. (2009)

Sources of predictability and error

- ENSO and tropical Atlantic
- Extratropical SSTs
- Trends and anthropogenic warming
- Model inadequacy
- Model improvement
- Soil moisture
- Snow
- Stratospheric processes
- Volcanic aerosol

Methods of seasonal forecasting

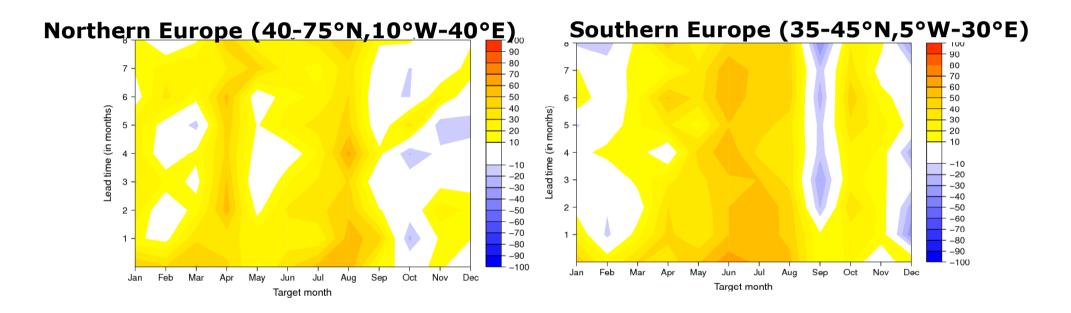
• Empirical forecasting


- o Use past observational record and statistical methods
- o Works with reality instead of error-prone numerical models
- o Limited number of past cases
 - o A non-stationary climate is problematic
 - o Can be used as a benchmark

• Single-tier GCM forecasts

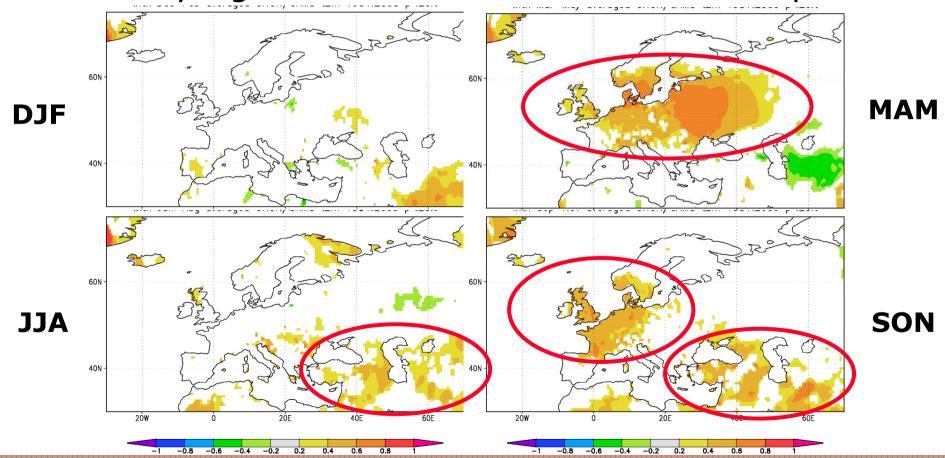
o Include comprehensive range of sources of predictability
o Predict joint evolution of ocean and atmosphere flow
o Includes a large range of physical processes
o Includes uncertainty sources, important for prob. Forecasts
o Systematic model error is an issue!

And verification is fundamental

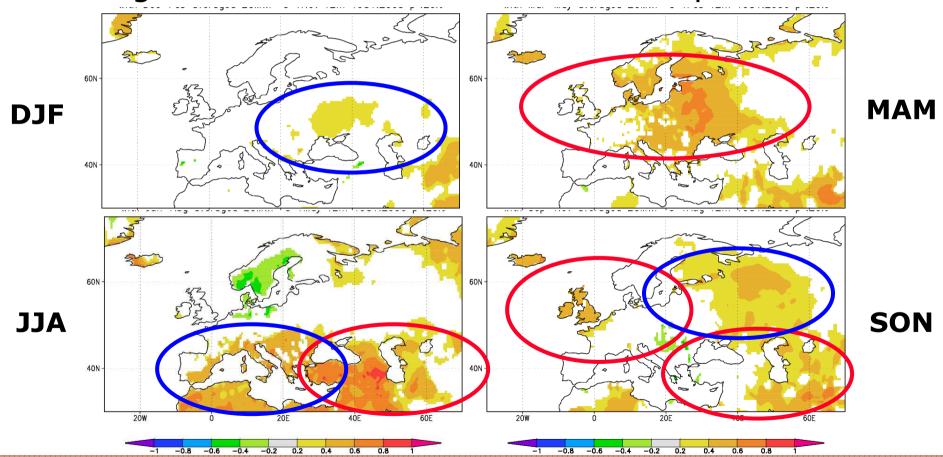

A good example of what should not be happening.

MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

Simple empirical model: persistence

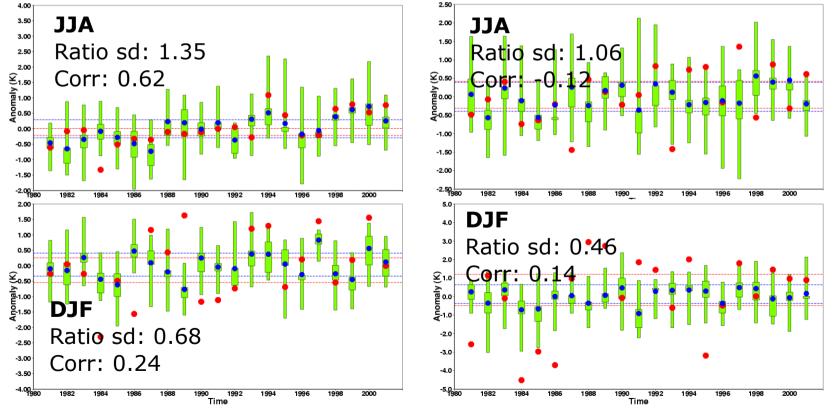

Correlation of a persistence model based on linear regression with GHCN temperature over 1981-2005, with the first regression model using data for 1952-1980.

Temperature skill: persistence


Correlation of GHCN temperature of one-month lead anomaly persistence over 1981-2005. Only values statistically significant with 80% confidence are plotted.

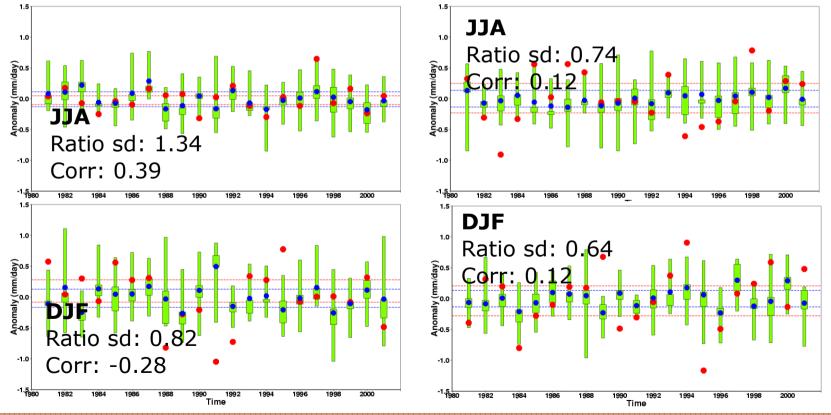
MedCOF Scoping Meeting - Seasonal prediction over the Euro-Mediterranean region

Temperature skill: System 3


Correlation of System 3 seasonal forecasts of temperature wrt GHCN over 1981-2005. Only values statistically significant with 80% confidence are plotted.

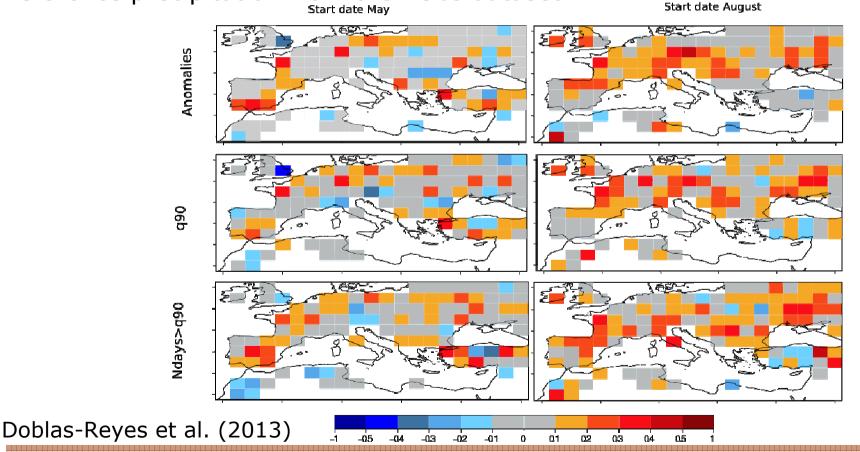
MedCOF Scoping Meeting - Seasonal prediction over the Euro-Mediterranean region

Seasonal re-forecasts for Europe


System 3 temperature re-forecasts for Southern (left) and Northern Europe (right) over 1981-2005. The green boxand-whisker show the ensemble range, the blue dot the ensemble mean and the red dot the ERA40/ERAInt value.

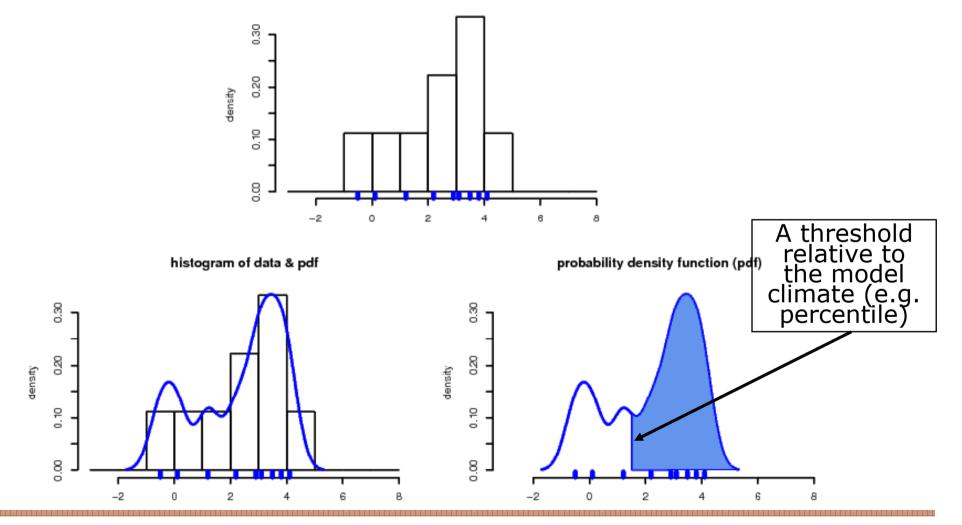
MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

Seasonal re-forecasts for Europe


System 3 precipitation re-forecasts for Southern (left) and Northern Europe (right) over 1981-2005. The green boxand-whisker show the ensemble range, the blue dot the ensemble mean and the red dot the GPCP value.

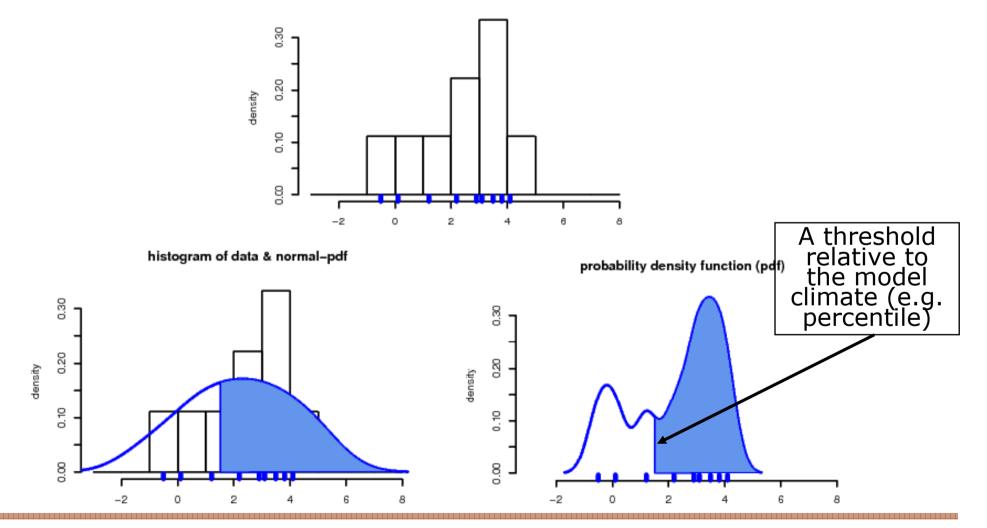
MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

Seasonal prediction: extremes


Ensemble-mean correlation of August (top row) monthly-mean precipitation anomalies, (middle row) 90th monthly percentile and (bottom row) number of days with precipitation above the 90th climatological percentile from DePreSys_PP hindcasts initialized in May (left) and August (right). Hindcasts over 1960-2005. Reference precipitation from the EObs dataset.

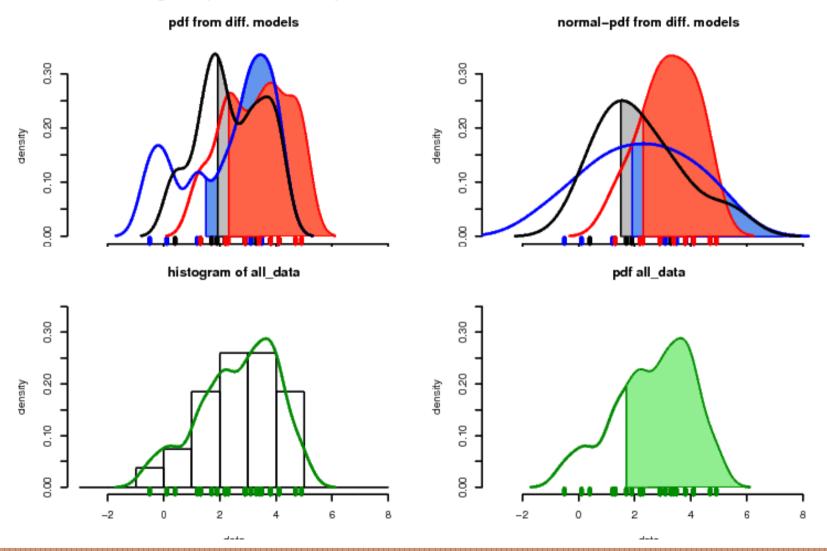
MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

From ensembles to probability forecasts


Constructing a probability forecast from a nine-member ensemble

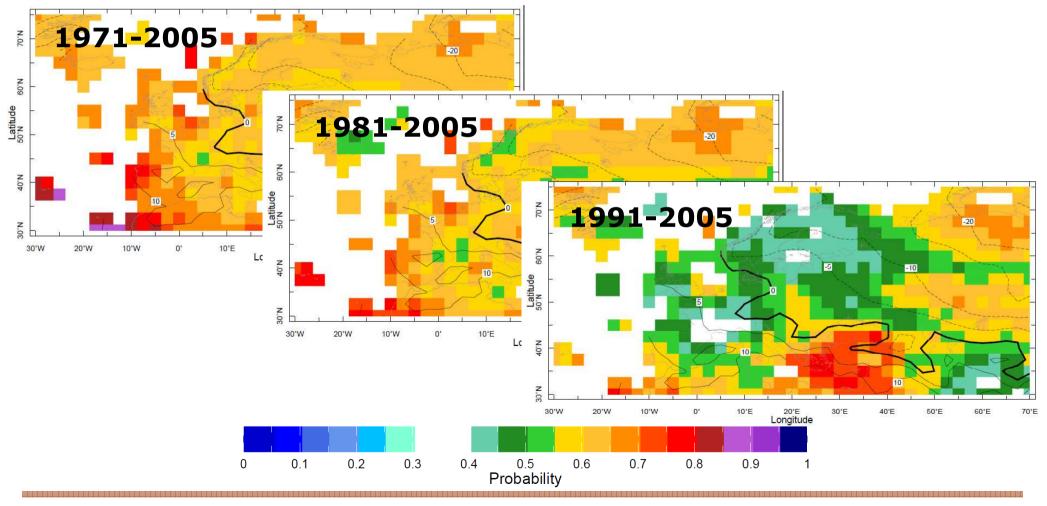
MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

From ensembles to probability forecasts


Constructing a probability forecast from a nine-member ensemble

MedCOF Scoping Meeting - Seasonal prediction over the Euro-Mediterranean region

From ensembles to probability forecasts

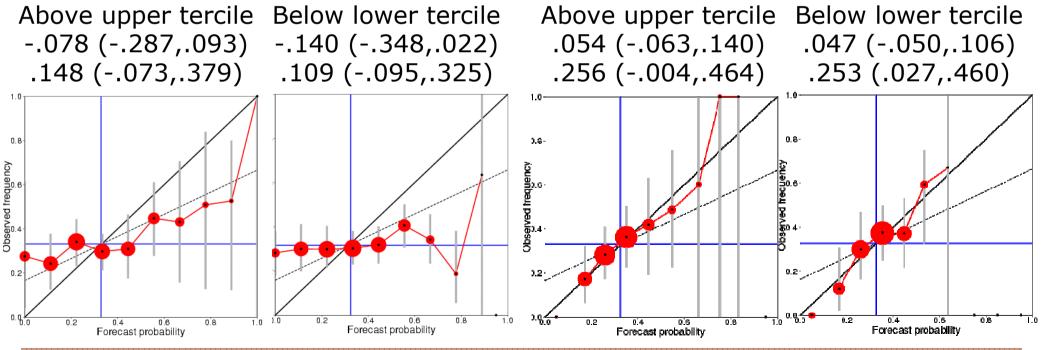

Constructing a probability forecast from a multi-model ensemble

MedCOF Scoping Meeting - Seasonal prediction over the Euro-Mediterranean region

Probabilistic prediction

One-month lead DJF 2009-10 IRI (flexible format) temperature forecasts for anom. above the upper tercile

MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region



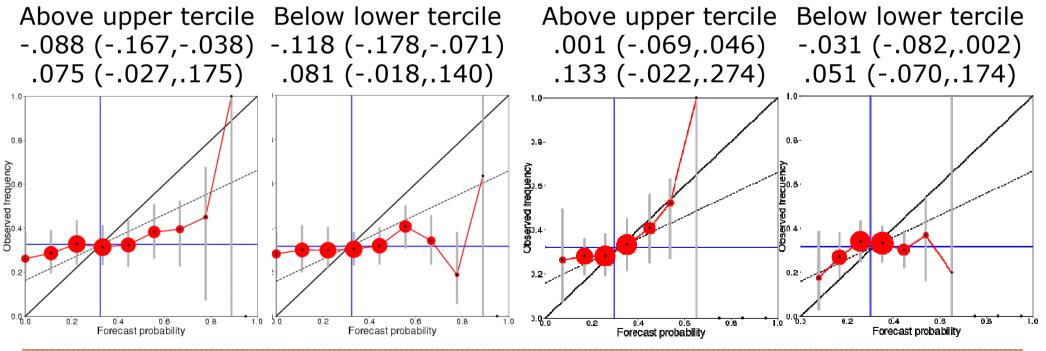
Multi-model improvement

Attribute diagrams for one-month lead seasonal (DJF) temperature over Southern Europe for System 3 (left, 9 members) and the ENSEMBLES Stream 2 multi-model (right, 45 members) over the period 1981-2005 verified against ERA40. Brier and ROC skill scores and 95% confidence intervals (in brackets) computed using a bootstrap method, are shown on top of each panel.

System 3

Multi-model

MedCOF Scoping Meeting - Seasonal prediction over the Euro-Mediterranean region



Multi-model improvement

Attribute diagrams for one-month lead seasonal (JJA) precipitation over Southern Europe for System 3 (left, 9 members) and the ENSEMBLES Stream 2 multi-model (right, 45 members) over the period 1981-2005 verified against GPCP. Brier and ROC skill scores and 95% confidence intervals (in brackets) computed using a bootstrap method, are shown on top of each panel.

System 3

Multi-model

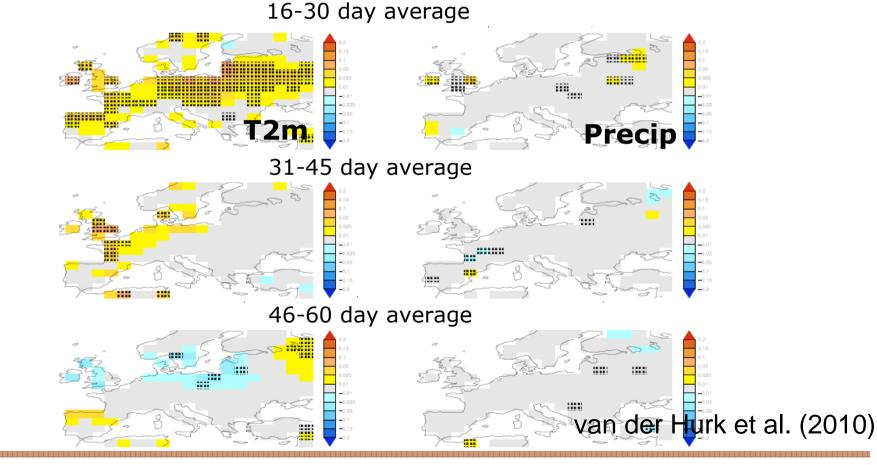
MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

INSTITUT CATALÀ DE CIÈNCIES DEL CLIMA

Dealing with model inadequacy

Debiased Brier skill score of one-month lead predictions of land temperature over the Giorgi regions for Multi-model (45 members, left columns), Perturbed parameters (9 members, central columns) and Stochastic physics (9 members, right columns) over 1991-2005.

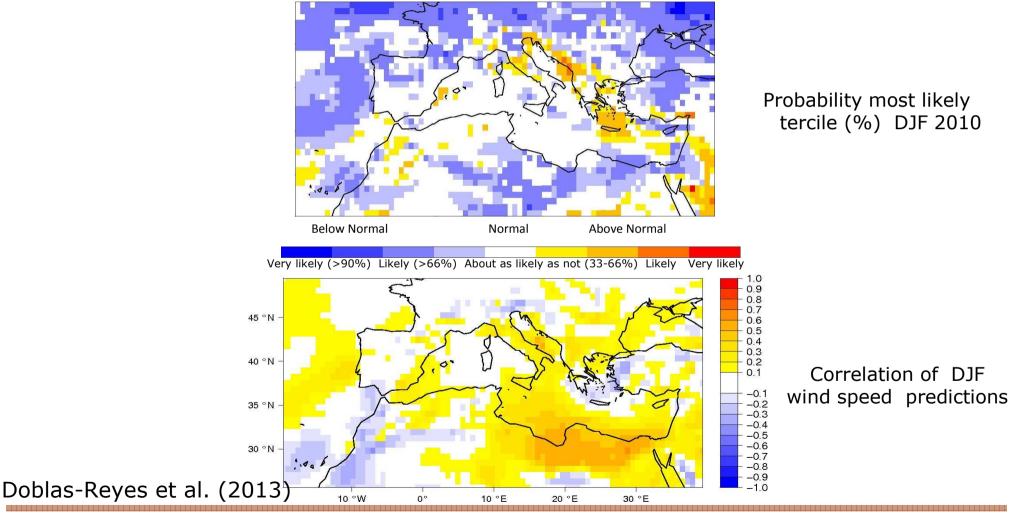
Significantly positive or negative scores are in bold.


	multi-model					perturbed parameters					stochastic physics				
North Asia	<u>24</u>	<u>26</u>	3.1	0.6		3.3	29	21	-1.0		1.0	0.6	25	-1.9	
Tibet	5.5	3.5	<u>6.5</u>	5.4		-1.4	-0.9	1.2	7.8		4.2	<u>6.4</u>	<u>10.7</u>	<u>10.0</u>	
Central Asia	-0.8	0.2	7.4	5.7		0.8	-3.1	<u>10.3</u>	<u>8.4</u>		-1.5	0.2	29	1.6	
South Asia	0.2	0.9	6.5	7.4		0.6	-27	7.0	9.4		27	1.9	5.5	10.2	
East Asia	0.5	-0.5	4.7	4.6		5.6	1.4	8.9	3.6		28	0.6	8.9	15.7	
South East Asia	14.3	9.7	8.8	8.3		5.5	4.8	5.6	8.3		10.3	1.1	9.6	12.5	
Sahel	-4.6	-3.6	-3.2	-1.5		-9.2	-6.7	-27	-24		-10.0	-1.0	-8.2	-3.6	
Southern Africa	3.5	1.0	5.7	9.5		7.2	4.7	6.0	11.3		7.8	9.2	7.7	8.9	
Eastern Africa	-2.8	1.8	3.9	2.5		-7.0	-7.6	14.4	13.2		-1.5	3.4	0.9	5.7	
	1.5	0.1	0.5	1.0		-10.0	0.0	4.0	1.0		4.0	24	-13.7	0.1	
Northern Europe	23	21	-3.1	-4.7		7.7	11.5	-1.8	-1.6		8.2	6.0	6.6	1.6	
Mediterranean	-1.2	1.2	-1.0	-1.3		-6.1	-4.4	-3.0	0.1		-0.9	0.1	11.5	10.7	
Croopland	26		27	20		1 /			17		- 4 .5	26	0.1		
Eastern North America Alaska	-1.9	0.0	<u>a.s</u> 4.0	-2.2		<u>-9.0</u> -2.3	<u>-1.1</u>	9.7 11.3	<u>3.7</u>		<u>-4.3</u>	-0.0	7.5	-2.5	
Central North America Eastern North America	0.6	22	7.7 8.3	<u>10.4</u> 10.6		-3.5 -9.6	-5.7 -11.1	<u>10.0</u> 9.7	<u>10.4</u> 13.2		1.7	3.0 -6.8	2.1 7.5	<u>5.5</u> 21	
Western North America	24	<u>81</u>	7.2	<u>7.8</u>		4.5	<u>7.5</u>	4.5	4.9		<u>9.1</u>	<u>84</u>	5.7	5.3	
Central America	<u>9.2</u>	<u>7.8</u>	<u>23.4</u>	<u>18.9</u>		<u>129</u>	5.2	<u>23.3</u>	<u>25.9</u>		<u>10.6</u>	7.7	<u>24.9</u>	<u>23.7</u>	
Southern South America	6.2	7.1	4.6	6.0		1.3	1.6	-4.5	-1.7		3.3	<u>9.0</u>	-4.7	0.2	
Amazon Basin	<u>10.3</u>	<u>10.3</u>	<u>16.0</u>	14.3		<u>8.8</u>	5.4	3.4	0.5		<u>12.2</u>	<u>11.4</u>	<u>16.1</u>	16.8	
Australia	7.6	7.0	0.9	3.0		5.1	8.0	<u>12.4</u>	5.2		25	5.0	<u>10.5</u>	6.6	
	dry	wet	dry	wet		dry	wet	dry	wet		dry	wet	dry	wet	
	JJA		DJF			JJA		DJF			JJA		DJF		
	PRECIPITATION														

MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

Sources of predictability: soil moisture

GLACE2 multi-model R2 difference between Series 1 and Series 2. Grid points with statistically significant differences with 98% confidence level are dotted.


MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

INSTITUT CATALÀ DE CIÈNCIES DEL CLIMA

Climate services: renewable energy

Seasonal prediction of 10-metre wind speed from ECMWF System 4, with climatology computed from 1981-2010. Reference from ERA Interim.

MedCOF Scoping Meeting – Seasonal prediction over the Euro-Mediterranean region

Seasonal forecast sources

- EUROSIP: Multi-model available at ECMWF:
 - ECMWF System 4
 - Met Office GloSea4 (in the future GloSea5)
 - Météo-France System 4
 - ➤ CFSv2
 - > MPI/DWD in the near future
 - ➢ Real-time since mid-2005, all data in ECMWF operational archive
 - > Common operational schedule (products released at 12Z on 15th)
- Other European operational systems

> CMCC

- North American Multi-Model Ensemble
 - Nine systems from the USA and Canada (CFS, GFDL, NCAR, NASA, CCCma, IRI)
 - > Available from a repository at IRI
- APCC

Some final thoughts

• In the end we need trustworthy models, but model development is a slow process.

• Timescale for improvements

- o Optimist: in 10 years, we'll have much better models, pretty reliable forecasts, confidence in our ability to handle climate variations
- o Pessimist: in 10 years, modelling will still be a hard problem, and progress will largely be down to improved calibration Users will require calibration and can provide feedback on the presentation of forecast information.
- Seasonal forecasting would benefit from a coordinated effort to improve the forecast systems and to combine climate information from different sources -> SPECS.
- Seamless prediction paradigm: dynamical weather and seasonal-to-interannual forecasts used to infer aspects of the quality of climate-change predictions in a seamless framework -> estimation of the reliability of regional predictions and projections.