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Seasonal forecasting

* Increasing demand of seasonal prediction
products by many sectors-> NMHSs need
to respond -> critical place in weather
and climate services

e Balance btw
— meeting demands
— predictability issues
— credibility of the organization
— commercial Issues



3 categories of seasonal
predictabllity

*Variables that exhibit INERTIA or memory:
ocean heat content, sea-ice, Sn , SM

Dominant PATTERNS of atmospheric and
ocean variability: ENSO, NAO, etc

External FORCING: volcanic eruptions,
changes In solar activity




Many sources of information

 Model Systems based on ensembles (e.qg.,
ECMWEF, MF, NCEP,...)

e Multi-Model Systems (e.g., EUROSIP, LC-
LRFMME, IRI, APCC, ...)
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Multi-Model APCC

(http://www.apcc2l.net )
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Multi-Model EUROSIP:
ECMWF/MetOffice/MF/NCEP

EURQSIP multi-model seasonal forecast ECMWF/Met Cffice/Meteo-France/NCEP

Prob(most likely category of 2m temperature) JJA 2013
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Multi-Model IR

IRI Multi-Model Pmbabilit; Forecast for Temperature

for June-July-August 2013, Issued May 2013
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Many sources of information

Model Systems based on ensembles (e.g., ECMWF, MF,
NCEP,...)

Multi-Model Systems (e.g., EUROSIP, LC-LRFMME, IR,
APCC, ..))

Operational empirical systems (e.g. IBIMET, ...)
Combination of systems (e.g., EUROBRISA)

Compilation/Expert judgement (e.g., RCC- LRF AR VI by
MF)

Local usage of different downscaling methods, CPT, ...
Many studies focused on windows of opportunity



Recommendations for Model Selection |
Averaging and Weighting (best practices )

A multi-model average often out-
performs any individual model e ST e
compared to observations. e

Document results from all models N
Range spanned by the models
Weighting models in an ensemble Is

not an appropriate strategy for some
studies.

Rankings or weightings could be used
to select subsets of models

Model agreement Is not necessarily an
Indication of likelihood.




' WCRPREPORT. B9
Best practices B

(WCRP Position Paper on Seasonal Prediction Report. 1st WCRP
Seasonal Prediction Workshop (Barcelona, Spain, 4-7 June 2007)

WCRP Position Paper on

Address forecast error by appropriately quantifying dynamical

tfrom the
First WCRP Seasonal Prediction Workshop

model uncertainty;
Recalibrate model output based on historical model performance;

Issue probabilistic forecast information;
Provide description of forecast process (including post-processing

methodologies);

Provide forecast quality information including several metrics of quality;

Regional climate service providers need to work with both the forecasting and
application communities to develop tailored downscaled products All the
ensemble members should be used;

Web based tools need to be developed to allow users of the prediction
information to tailor the underlying climate information more easily to their
needs (e.g. climate range/thresholds, spatial scale(s)).

Use regional mechanisms like RCOFs to develop consensus based regional
climate outlooks based on a scientific assessment of multiple prediction
outcomes

Actively promote user liaison to understand their climate information needs in
decision making and also raise their awareness of the uncertainty aspects of
seasonal forecasting

Promote regional/national ownership of seasonal forecasts through effective
and sustained capacity building and infrastructural support

|L



A RCOF should have a protocol for

producing consensus seasonal forecast
based on a code of best practices -

Some kind of decalogue strictly followed
during the process of forecast producion



Sources of predictability

Variables that exhibit INERTIA or memory:
ocean heat content, sea-ice, Sn, SM

Dominant PATTERNS of atmospheric and
ocean variability: ENSO, NAO, etc

External FORCING: volcanic eruptions,
changes in solar activity

e.g., IBIMET
Monthly large scale Lead Time
predictors indexes: [months]
Atmosphere
SV - NAM 6
Mod. Zonal 3
Index
Multi ENSO 4
Index
SSTA
Atl. Tripole 6
1st EOF 3
Guinea

Comprehensive list of good predictors - many
papers focused on certain windows of
opportunity (season, region, ...)

Are processed well represented by models?




Are simple empirical methods an alternative or a
complement to dynamical seasonal forecasts?

DYNAMICAL

Non-linear interactions = YES
Cond. of non-stationarity = YES
INITIALISATION - crucial

Some processes/phenomena are
not properly simulated [e.g.,
stratosphere, snow—atmosphere
coupling, land surface-
atmosphere coupling, strong SST
gradients, etc]

They always produce some
prediction although frequently
useless

EMPIRICAL METHODS

Non-linear interactions = NO

Cond. of non-stationarity = NO

USEFUL until dynamical forecast
systems improve

Simple linear methods go directly
to correlate those processes/
phenomena not properly simulated
by models

Predictors used by empirical _
methods are constrained to certain
seasons, regions, variables [

Need to identify the most adequate
predictors for each season, region,
variable.



Near-surface air temperature
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(Molteni et al. 2011)
Ensemble-mean anomaly correlation for 2m T in JJ4: S4 (top), S3 (bottom).



Frecipitarion
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Ensemble-mean anomaly correlation for precipitation in JJ4- 54 (fop), 53 {botto



* Predictors used by empirical methods are
constrained to certain seasons, regions,

variables -

* Need to identify the most adequate
predictors for each season, region,
variable.



Example : index fo redictions

(Cohen & Jones

Arctic Oscillation (AO) @ - — (1 .
explains the largest Siberian Snow Cover Less October iberi
. ; Siberian Snow Cover Expands

fraction of temperature Expansive )
variance for NH winter. . g

S N ™
AO reSUItS_from |ntrl_nS|C @ Warmer Surface Conditions 2 Induced Surface Cooling
atmos_pherlc d_ynamlcs or Weaken Siberian High Strengthens Siberian High
chaotic behavior and . # November g
therefo .re 1S @ Tropospheric Jet More Zonal, ) 3 Tropospheric Jet Amplifies,
u npredICtable- Weaker Poleward Heat Flux/ Enhances Poleward Heat Flux/
Snow advance index \___ Vertical Wave Propagation ) Vertical Wave Propagation )
(SAI) derived from D

A ~, December 4 ~.
antecedent observed . O Stratospheric Polar Vortex Stratospheric Polar Vortex
snow cover that explains Remains Strong (i.e., Cools) Weakens (i.e., Warms)
a large fraction of the ~ ~ ”
variance of the winter
AO @ B O January 5> ) Stratospheric Circulation
o . Anomalies Propagate Anomalies Propagate

High correlation between i into the Troposphere ) into the Troposphere )
SAl and the winter AO § .
=> AO IS mO_St llkely @ Positive AO Conditions February ’ Negative AO Conditions
pred |Ctab|e => Sk|"fU| Develop in the Troposphere Develop in the Troposphere

seasonal climate . J )
predictions. Low Snow Cover Years ‘\/ High Snow Cover Years




Rate of increase of
Eurasian snow cover in
October, as described b
the regression coefficier
of the least squares fit o
the daily/weekly Eurasie
snow cover extension in
geographical domain
covering 25°-60°N, 0°—
180°E. [Units: million
km2/day]

Daily SAI - Interactive
Multisensor Snow and
IceMapping System
(IMS), which are availak
on a resolution of 24 km
for each day from 1997
onward (Ramsay 1998).
Weekly SAl > NOAA
satellite-sensed
observations, offering a
much longer time series

(from 1972 onward) at the

expense of a lower
temporal and spatial

resolution (Robinson et al.

1993).

Standardized anomaly

SAIl definition

-4

—— DJF AO index

4
—— October SAI r=0.859 3
2

1998-99

L L | i L ! i i I | -4
2000-01 2002-03 2004-05 2006-07 2008-09 2010-11
Winter season

® SAl Index is the regression coefficient of the least square
fit of the daily Eurasian SCE equatorward of 60N calculate d
for the month of October. Units: million km2/day. Only snow
cover for Eurasia (25-85N and 0-180FE) is computed.




Pearson corr. btw October SAI and
DJF precipitation

. g W W]
72°N —

™ e iy
30°N | '

12°W 57°E

FIG. 1. Pearson correlation coefficients between the October daily SA @ and the precipitation sums of the following
DIJF {n — 14; critical value — +0.53). Locally significant correlations {e,.y — 0.05) are shaded in black. Global
significance was obtained {cgopa — 0.05); all calculations are based on E-OBS.

(Brands et al. 2012)




Another example:
Correlation coefficient for May soil moisture anomaly (top 2m, from ERA-I)
vs Forecast Mean JJA Tmax in 21 years of GLOSEA4 May  hindcasts

a) Soil moisture and Tmax

90N

(Hewson 2011)



Pearson corr. SM (ERA40) vs Tmax

Correlacidn dePearson entre laz Anomaliaz de la Humedad Suelo capa 2 (ptos ERA400 v de 1a Temnperatura Iiaszima en la Pendnsula Ihérica
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Need of predictability estimation for every
prediction system using a variety of metrics

EVALUACION DE LA PRECIPITACION ACUMULADA EVALUACION DE LA TEMPERATURA
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Better with downscaling!

Fip. 2. Prohability forecasts of the threg
terciles (dryfmormaliwet) for an illustrative
erid point shown in Figs 3(c)h and (d) for the
period 198 1-2001 15 resulting from the
ECAS and the 8YS.35 predictions. The
circles show the comesponding observed
terciles for each of the years.

Tellus 63A (200110, 4

In mid-latitudes, significant predictability is only
found for particular seasons (SON), areas (mostly
over the Iberian Peninsula) and events (dry).
However, the regions where the regional
downscaled forecasts are skillful differ from those of
the global ensemble.

1890

o o

1995 2000

(Diez et al. 2011)



wigst~ WCRP®  THORPEX

SUBSEASONAL TO SEASONAL PREDICTION

RESEARCH IMPLEMENTATION PLAN
22 June 2012

Common methodologies and metrics to validate models, estimate skill
and to evaluate model performance in simulating and predicting
teleconnections.

|dentify potential sources of predictability and their representation in
models

Identify, represent and convey the conditional skill of forecasts during
'‘windows of opportunity’ when predictability is enhanced

Modelling issues: initialization, resolution, coupling oc/at, spred/skill
relationship, ensemble generation, ......



Conclusions/recommendations

Seasonal forecasting over Europe/Med. region would
benefit from a coordinated effort to improve the forecast
systems and to combine climate information from different
sources (Doblas-Reyes 2010)

Seasonal forecasting over Europe/Med. region would
probably be feasible only restricted to certain windows of
opportunity (variability patterns, seasons, variables,
regions, systems,...). But exactly what these are or how
to recognise them is still unclear!

Never disregard any source of predictability! Use all
sources of available information (models and empirical)
and mix them in an “intelligent” way

Provide probabilistics products meeting users needs -
EUPORIAS project approach

Verify, verify and verify



