Climate Forecasting or the Continuous Adaptation to Climate Change

F. J. Doblas-Reyes, ICREA, BSC and IC3 Barcelona, Spain

Climate time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Multi-Decadal to Century Climate Change Projections	Decadal Predictions	Seasonal to ~1 Year Outlooks	Daily Weather Forecasts
time scale			Initial Value Problem
Forced Boundary Condition Problem			

Meehl et al. (2009)

Sources of seasonal predictability

- Important:
 - o ENSO
 - o Other tropical ocean SST
 - o Climate change
 - o Local land surface conditions
 - o Atmospheric composition

• Other factors:

- o Volcanic eruptions
- o Mid-latitude ocean temperatures
- o Remote soil moisture/snow cover
- o Sea-ice anomalies
- o Stratospheric influences
- o Remote tropical atmospheric teleconnections
- Unknown or Unexpected

- biggest single signal
- difficult
- important in mid-latitudes
- soil moisture, snow
- difficult

- important for large events
- still somewhat controversial
- not well established
- at least local effects
- various possibilities

Methods of seasonal forecasting

• Empirical forecasting

- o Use past observational record and statistical methods
- o Works with reality instead of error-prone numerical models
- o Limited number of past cases
- o A non-stationary climate is problematic
- o Can be used as a benchmark

• Single-tier GCM forecasts

o Include comprehensive range of sources of predictability
 o Predict joint evolution of ocean and atmosphere flow
 o Includes a large range of physical processes
 o Includes uncertainty sources, important for prob. Forecasts
 o Systematic model error is an issue!

A simile: Weather types

Z500 summer weather types and frequency change (%) of warm days

Cassou et al. (2005)

The wedge: ENSO in the tropical Pacific

Temperature skill: persistence

Correlation of GHCN temperature of one-month lead anomaly persistence over 1981-2005. Only values statistically significant with 80% confidence are plotted.

To produce dynamical forecasts

- Build a coupled model
- Prepare initial conditions
- Initialize coupled system
 - o The aim is to start the system close to reality. Accurate SST is particularly important, plus ocean sub-surface. Usually, worry about "imbalances" a posteriori.
- Run an ensemble forecast
 - Explicitly generate an ensemble on the e.g. 1st of each month, with perturbations to represent the uncertainty *in the initial conditions*; run forecasts for several months.
- Produce probability forecasts from the ensemble
- Apply calibration and combination if significant improvement is found, for which hindcasts are required

Ensemble initialized climate predictions

Autosubmit

Autosubmit acts as a wrapper to run a climate experiment on a HPC. The experiment is a sequence of jobs that it submits, manages and monitors. When a job is complete, the next one can be executed.

- Divided in 3 phases: ExpID assign, experiment creation, run.
- Separation experiment/autosubmit codes.
- Config files for autosubmit and experiment.
- Database to store experiment information.
- Common templates for all platforms.
- Recovery after crashes.
- Dealing with a list of schedulers and communication protocols.

Each job has a colour in the monitoring tool: yellow=completed, green=running, blue=pending, etc.

Real-time ocean observations

Third quarter 1997 First quarte ADCP Tropical Indian Ocean Moored Buoy Array Surface Mooring = Flux Reference Site = ADCP 20°1 0°N 0 lo°s

40°F

60°E

80°F

100°E

120°E

ARGO floats

Argo Network, as of March 2006

-	
ARGENTINA (6)	OSTA RICA(1)
AUSTRALIA (92)	 EUROPEAN UN. (25)
BRAZIL (3)	 FRANCE (163)
CANADA (76)	 GERMANY (123)
CHILE (4)	 INDIA (74)
 CHINA (9) 	IRELAND (1)

APAN (353)	
OREA, REP. OF (83)	• NORWAY (9)
AURITIUS (2)	 RUSSIAN FED. (3)
AEXICO (1)	SPAIN (6)
NETHERLANDS (7)	 UNITED KINGDOM (96)
VEW ZEALAND (6)	 UNITED STATES (1293)

XBT (eXpendable BathiThermograph)

2436 Active Floats

jcomm Ops

Why running several forecasts

A farmer is planning to spray a crop tomorrow

How many members: ensemble size

ECMWF forecasts (D+42) for the storm Lothar

And there are systematic errors

• Model drift is typically comparable to signal

Both SST and atmosphere fields

• Forecasts are made *relative* to past model integrations

- Model climate estimated from 25 years of forecasts (1981-2005), all of which use a 11 member ensemble. Thus the climate has 275 members.
- Model climate has both a mean and a distribution, allowing us to estimate eg tercile boundaries.
- Model climate is a function of start date and forecast lead time.

• Implicit assumption of linearity

- We implicitly assume that a shift in the model forecast relative to the model climate corresponds to the expected shift in a true forecast relative to the true climate, despite differences between model and true climate.
- Most of the time, the assumption seems to work pretty well. But not always.

Mean error

Mean biases (JJA 2mT over 1993-2005) are often comparable in magnitude to the anomalies which we seek to predict

ECMWF

Met Office

-5.0 -4.0 -3.0 -2.0 -1.0 -0.5 0.5 1.0 2.0 3.0 4.0 5.0

-5.0 -4.0 -3.0 -2.0 -1.0 -0.5 0.5 1.0 2.0 3.0 4.0 5.0

ENSO ensemble predictions

CECMWF

From ensembles to probability forecasts

Constructing a probability forecast from a nine-member ensemble

Madrid, 29 October 2015

From ensembles to probability forecasts

Constructing a probability forecast from a nine-member ensemble

Probabilistic prediction

Probabilistic prediction

One-month lead DJF 2009-10 System 3 seasonal forecasts: tercile summary

References: what actually happened

DJF 2009-10 seasonal anomalies wrt 1981-2005.

Impact of the reference period

One-month lead DJF 2009-10 IRI (flexible format) temperature forecasts for anom. above the upper tercile

Regional skill: System 4

Correlation of System 4 seasonal forecasts of temperature wrt GHCN over 1981-2010. Only values statistically significant with 80% confidence are plotted.

Madrid, 29 October 2015

SPECS FP7, overall strategy

SPECS will deliver a new generation of European climate forecast systems, including initialised Earth System Models (ESMs) and efficient regionalisation tools to produce quasi-operational and actionable local climate information over land at seasonal-to-decadal time scales with improved forecast quality and a focus on extreme climate events, and provide an enhanced communication protocol and services to satisfy the climate information needs of a wide range of public and private stakeholders.

		• Management	Dissemination	Coordination Mechanism	
Forecast System	Project Partners	management	RT3		RT6
CNRM-CM5	CNRM, CERFACS	BT2	Improved initialisationEnsemble generation	BT5	
EC-Earth	KNMI, SMHI, IC3, ENEA	Process evaluation	RT4	Regionalisation Calibration	Pilot impactsStakeholdersRegional climate
IFS/NEMO	ECMWF, UOXF	 Forecast quality Case studies and extremes 	 Radiative forcing Stratosphere 	 Combination Empirical models 	outlook fora GCFS Education
IPSL-CM5	CNRS		Model inadequacyConvectionLand surface		Communication
MPI-ESM	MPG, UniHH		• Increased resolut (3)		
UM	UKMET	WP1.1: Management WP1.2: Dissemination WP1.3: Coordination acr RT2: Evaluation of curren	oss EUPORIAS, NACLIM & S nt s2d forecast systems	RT3: Forecast strateg SPECS RT4: Improved system RT5: Calibrated predic	ies ns ctions at the local scale

Summary

- Work on initialisation: initial conditions for all components (including better ocean), better ensemble generation, etc. Link to observational and reanalysis efforts.
- Model improvement: leverage knowledge and resources from modelling at other time scales, drift reduction. More efficient codes and adequate computing resources.
- Calibration and combination: empirical prediction (better use of current benchmarks), local knowledge.
- Forecast quality assessment: scores closer to the user, reliability as a main target, process-based verification.
- Improving many processes: sea ice, projections of volcanic and anthropogenic aerosols, vegetation and land, ...
- More sensitivity to the users' needs: going beyond downscaling, better documentation (e.g. use the IPCC language), demonstration of value and outreach.