Downscaling of Climate Predictions : Methods and Challenges

J.P. Céron – Météo-France / Direction of Climatology Jean-Pierre.Ceron@meteo.fr

The Downscaling problem

Relevant Scales

- Mesh of the GCM ~ 200 km,
 3 month averaged information
 (*or month by month*)
- Scales of applications ~ 1m to 10 km, Day, 10 days, month,
- Climate parameters (RR, Tn, Tx, Number of days ...),
- Parameters from the application domain (Agriculture, Water resources, Health, ...),

jours un temps d'avance

The Downscaling problem

Seasonal predictability and associated scales ⇒ usefull information for the user (scale adaptation)

key questions

- Until which scales one can expect to downscale the large scale information ?
- How the best compromise between the limits of seasonal predictability and the needs for applications ?

The Downscaling bases

Main goal of the downscaling is

- To take into acount mean local effects of the large scale forcing
- To adapt the seasonal forcasting information to the relevant scale for the user (at least to get better resolution generally needed both in space and time)

The downscaling should

- Reflect the mean effect of sub-grid processes
- Take into account physical processes at the « local » scales
- Bring more than a simple linear interpolation
- The downscaling brings
 - some artificial increase in the resolution
 - uncertainty which must be evaluated
 - Information which is part of the ensemble/probabilistic forecast

The Downscaling bases

Large scale forcing

One has chance some to succeed IF the smaller scales are significantly forced by the large scale signal.

The Downscaling bases

Impact of the large scale forcing at « local » scales

- Methods to assess this impact
 - Composite analysis,
 - CCA, SVD,
 - Clustering
 - ...

- Diagnosis related to Downscaling
 - Space gradients, ...
 - Homogeneous zones, ...
- Description of « local » signal and associated database
 - Data quality,
 - Network density,
 - Spatialization (be carefull with GIS !),

Purely Statistical methods

- Analysis of Large Scale Conditions (e.g. SST, SOI, ...)
- Asumption : LSC have a slow evolution and a significant influence on the « local » climate,
- Statistical tools (mostly linear) including AR models
- Common approach in RCOFs
- + low computing cost,
- + easy to implement operationally,
- possible artificial scores,
- weak representation of interactions within the climate system
- difficult to use with complex relationship
- need regular recalibration (multidecadal variability; un temps d'avance

- SCOPIC (Seasonal Climate Outlook for Pacific Island Countries)– BOM contribution
- Linear Discriminante Analysis

New-Caledonia

Prévisions statistiques pour la période : novembre 2005 à jai

Prévisions de précipitations réalisées

	Prévisions de novembre 2005 à janvier 2006					
	Prévisions probabilistes			Scores des vérifications		
	Prob T1	Prob T2	Prob T3	LEPS	HR	
Postes	en %	en %	en %	en %	en %	
Koumac	28.5%	34.3%	37.3%	15.3%	50.9%	
Gomen	28.4%	34.1%	37.5%	19.3%	50.9%	
Voh	29.4%	32.0%	38.6%	16.0%	47.2%	
Koné	28.2%	34.2%	37.6%	23.4%	49.1%	
Puembout	32.5%	29.0%	38.5%	15.6%	52.4%	
Poya	24.8%	37.6%	37.6%	16.1%	50.0%	
Bourail	27.1%	35.3%	37.6%	21.0%	56.6%	
La Foa	23.3%	38.6%	38.1%	23.1%	58.5%	
Boulouparis	27.9%	33.9%	38.3%	16.2%	48.9%	
Tontouta	26.4%	36.1%	37.4%	13.8%	58.5%	
Païta	23.7%	38.2%	38.1%	18.0%	62.3%	
Nouméa	23.3%	38.4%	38.3%	13.1%	52.8%	
Plum	26.2%	36.6%	37.2%	12.1%	53.8%	
Pouébo	25.0%	37.5%	37.5%	6.5%	29.2%	
Galarino	27.5%	35.7%	36.8%	4.4%	42.2%	
Hienghène	31.0%	32.9%	36.2%	3.7%	41.2%	
Touho	23.6%	38.2%	38.2%	11.0%	38.5%	

State of the Climate system (ocean-atmosphere + Cryopshere-Biosphere)

User's

models

Statistical models

(PP or MOS)

Usefull Forecast at smaller scales

Dynamical / Statistical methods

- Forecasted Large Scale Conditions (from GCM)
- Asumption : LSC which have a significant influence on the « local » climate are « well » represented in the GCM
- Perfect Prog (PP) or Model Output Statistics (MOS)
- + Reasonable computing cost for the downscaling,
- Complexity of the climate system represented in the LSC (GCM)
- + Potential predictors physically based (and numerous)
- Correction of systematic bias of the GCM behaviour (MOS only)
- + Uncertainty sampling (ensemble forecast, multi-model, ...)
- Quite easy to implement operationally (GCM ouput access ?)
- GCM limitations and bias,

Methods of Downscaling

The different methods

- Linear methods
 - Regression (Multiple, ...)
 - Discriminant Analysis (Linear, FDA, ...)
 - CCA, SVD, ...
 - Modes of Variability (model vs « observed » modes),
 - ...
 - Non Linear methods
 - Neural networks (optimisation of the network),
 - Analogues / Anti-analogues (optimisation of the distance and choice of the number of analogues)
 - Circulation regimes / weather types (Model vs « observed »),
 - Regression trees,

• ...

100

- Methods for Robustness evaluation
 - Overfitting
 - Multidecadal variability,
 - MOS vs PP

Papouasie-Nlle-Guinée

Sydney

Melbow

Australie

Îles

Salomon

Vanuatu 🗞

Nouvelle Zélande

Nouvelle-Calédonie

&_{Fidji}

Auckland

Additional information brought by downscaling

Additional information brought by downscaling

T1 T2 T3

Comparison of MOS adaptation using a 15-year climatology with a Perfect Prog adaptation using reanalysis (or longer hindcasts ?)

« Arithmetic Chi2 »

	T1	T2	Т3
T1	1/9	1/9	1/9
T2	1/9	1/9.	1/9
Т3	1/9	1/9	1/9

Arithmetic Chi2 of the tercile forecasts in validation modes : NC on learning file C cross vaildation For Perfect Prog mode (PP) and MOS mode (MOS) over a 15-year period.

Downscaling (MME issues)

Adaptations of GCM's output over New-Caledonia

Rainfall

State of the Climate system (ocean-atmosphere + Cryopshere-Biosphere)

Dynamical methods

- Limited Area Model coupled with the GCM
- Asumption : The LSC force the « local » climate which is better represented in a LAM
- Model Output Statistics can be added
- + No needs of observations over the region of interest,
- Complexity of the climate system represented in the LSC and the LAM
- Better extreme events forecasts
- + Uncertainty sampling (ensemble forecast, multi-model, ...)
- Difficult to implement operationally (GCM coupling files)
- GCM limitation and bias,
- Huge computing resources
- Boundary effects
- LAM limitation and error propagation

Dynamical downscaling

- Available RCM models
 - MM 5
 - PRECIS,
 - ALADIN
 - HIRLAM,
 - ,
- Hight Resolution Global Circulatic
 - Full HR GCM
 - Stretched Grid

- Available models (HR GCM)
 - Earth Simulator (~10 km Research),
 - ECMWF (T159 L62 / N80 for the physics operational davar ~125 km)

Large scale forecast : Above Normal forecast

Dynamical downscaling

General Circulation Model

- Quality of Mean climate and variability and assessment of GCM bias
- Quality of the Large Scale Forecast
- Provision of coupling files,
- Provision of hindcast,
- Regional Climate Model
 - Quality of Mean climate and variability and assessment of LAM bias (LAM forced by Reanalysis)
 - Reference experiment (LAM forced by GCM hindcast),
 - Evaluation of Forecast quality
 - Verification of added value to the Large Scale Forecast
 - Operational coupling,

Other Points of interest :

- Global Circulation Models
 - Influence of resolution on the quality of the Large Scale Signal (mean climat, bias, forecast)
 - Influence of resolution on the efficiency of dynamical downscaling
 - Parametrizations
 - Coupled Climate Components
 - ...

- One way versus Two way nesting,
- Relevant LAM resolution with respect to GCM resolution,
- Choice of simulated area,
- Parametrizations,
- Coupled vs Uncoupled RCM,
- Influence of large water bodies,
- Extreme event forecasts,
- How to cope with GCM bias ?

Domain choice :

ENSEMBLES project

http://ensembles-eu.metoffice.com/

Mediterranean AORCM

Atmosphere: ARPEGE-Climate

(Gibelin and Déqué 2003)

- Global and spectral AGCM
- 31 vertical levels
- Stretched Grid
- Zoom over the Med Sea
- Resolution : 0.5° (50 km)

Ocean: OPAMED8

(Somot et al. 2006)

- Horiz. resol.: $\Delta x \sim 1/8^{\circ} \sim 10$ km
- 43 vertical z-levels
- Atlantic buffer zone (3D-relaxation for S and T)
- Explicit river runoff fluxes (UNESCO database + Black Sea)
- MedAtlas-II initial conditions
- 10-year spin-up

Coupling impact in Summer: ∆(AORCM) - ∆(ARCM)

- AORCM: drier and warmer
- SST : less warming in the AORCM (-0.5°C, Aegean Sea, 99% signif.)
- Increase in land-sea temperature contrast
- Decrease in relative humidity over land (« Rowell and Jones, 2006 » effect)
- Positive feedbacks (soil water, nebulosity)

Methods of Downscaling

Other methods

- Conditional dynamical simulations (e.g. by circulation regimes / Weather types),
- Interpolation and local corrections (e.g. vertical gradients, quantiles/quantiles corrections)
- Weather generators,

Methods of Downscaling

Simple interpolation method (ROUSSET-REGIMBEAU, 2007)

Methods comparison

 Purely Dynamical and Statistical/Dynamical methods give quite comparable results

Palmer and all, 2004, BAMS (Demeter paper)

Downscaling in time

Intraseasonal variability

- Intraseasonal evolutions
- Intraseasonal modulations
- Significant intraseasonal forcing of the MJO on Tn, Tx and RR

23°S

<u>Probabilities of rainfall above the upper</u> <u>quintile (strong rainfall) in JFM vs MJO phases</u> <u>(Real time MJO Multivariate Index – Wheeler</u> <u>& Hendon – MWR - 2004)</u>

Downscaling in time

MJO/NAO relationship

Min. Temp. extremes

Sucess in downscaling depends on :

- The predictability over the targeted region,
- The « local » part of the signal which is large scale forced,
- The parameter, the targeted gategories and the period ,
- Good observations for calibration when needed (climate and users's domain),
- The use of the information,

About downscaling models (MOS or PP) :

- A sufficient long period for training (notably when multidecadal variability is present),
- Recalibration of the model on a regular basis (notably when one have a short training period),
- Recalibration when the GCM changes (MOS),

About downscaling models (MOS or PP) :

- Verification of added value brought by the model,
- Verification of the robustness of the model,
- Robustness seems to depend on the category (terciles more robust than quintiles),
- The merging of information coming from different GCM can be done quite easily (but is it better than single model downscaling ?),
- For short training period, the Perfect Prog approach seems to be quite robust (use depends probably on predictability)
- A lot of methods can be used,
- The « best » choice can depend on the forcing, the period and the parameter,

About Dynamical downscaling :

- Verification of additional value brought by the RCM,
- Challenge for extreme events,
- Coupled version can improve the local representation of the local climate (depends on the link between local SSTs and local climate),
- Challenges in initial states (e.g. Snow / Ice, soil moisture, ...),
- Fine mesh analysis (notably for surface parameters)
- Resolution / Parametrizations / ...
- Multimodels issues

About Downscaling :

- Tools similar for both seasonal and climate change issues,
- Capacity building useful for both seasonal and climate change issues,
- Seasonal forecasts first step for CC adaptation,
- Tailoring and Downscaling quite similar activities
- Many softwares available for statistical downscaling
- MOS (or PP when necessary) could be promoted notably in the frame of RCOFs activities and WMO framework
- Some RCMs already widely disseminated take care with operational aspects for seasonal forecasting
- Difference between operational forecasting suites and « resarch » mode (more suitable for CC issues)

