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' Introduction

E Why Verification ?

@ For Modelers
» Detection of problems and discrepancies
» Validation and evaluation of models,
> Improvement of models
» Comparison of models

@ For Users :
> Better knowledge of model performance over the region of interest
> Better use of the information
» Assessment of contribution of the forecast as additional information
to the user’s activity
I » Assessment of the « value » of the forecasting information
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' Introduction

E Comparing the forecast to what ?

@ Verification dataset
» Observations (not regularly located, needs of rules to compare
« local » informations and model forecasts)
» Users’s dataset
» Model analysis (problem of the size of the series with respect to the
homogeneity of the analysis)
» Reanalysis (most of the time for Climate Models)
> Grided dataset, (e.g. E-Obs, GPCP, ...)
Quality of the reference data crucial !

@ Forecasting strategy (including users) :
| » Climatology
> Persistence
* Other forecasting system
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' Introduction

B To answer to which question ?

@ Different aspects for Modelers
> |Is the model Good ? Skilful ?
> |s the uncertainty estimate correct ?
> |s the model perform better than another existing model ?

@ Different aspects for Users
> |s the information useful (including for Decision) ?
> |s the information bring added value ?
» Has the information some value ?
» Has the use of the information some impact on the user's activity?
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' Introduction

B Additional consideration

@ On Verification on the hindcast
»Need of large sample size to get significant results
»Numerous criteria (scores and skill-scores — see lecture on scores)
which help to answer to specific questions
» Choice of the target (question to address) crucial
» Specific aspects related to the probabilistic nature of the forecast
> Interpretation about little skill (predictability vs model)
» Significance and robustness
»Caution in interpretation and use
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Skill of Seasonal forecasts

F  Quality of Seasonal T2m forecasts
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Skill of Seasonal forecasts

F Quality of Seasonal Rainfall forecasts
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, Introduction

B Additional consideration

@ Verification of the current forecast
» Specific criteria to be used
» mpact of the predictability (and associated diagnosis)
»mpact of weather vs climate
»Caution in interpretation and use
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Reliability and Skill

How can we detect the predictability ?

Analyse of the reaction of the atmosphere in the Tropics (direct and indirect
action of SST) and beyond (especially via teleconnections to mid-latitudes)

Some periods where the predictability is :

« Good » « Weak »
Feb 1998 CHI&PSI@200 July 2011 CHI&PSI@Z200
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atmospheric circulation
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o 4

Reliability and Skill

= Quality of the forecasts vs years (Geopotential Heigh)

Winter season (DJF)
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lemperature Probabilities for DJF lemperature Probabilities for DJF

associated with La Nina {(Min. 10 NINO3.4 SSTa D associated with El Nino (Max. 10 NINO3.4 SSTa DJF 1950—1995)
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lemperature Probabilities for JJA
La Nina {Min. 10 NINO3.4 SSTa JJ

asscciated with
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’ Preliminary question

F How do we know that a forecast is « good » ?

@ The method of verification depends upon the nature of
information provided by the forecast
» An event
Forecast: It will rain tomorrow Verification : Yes / no.
» A quantitative information (deterministic)
Forecast: There will be 5mm of rain tomorrow.
Verification :Calculate error in amount of rain..
» A probabilistic information
Forecast :The probability of No significant rain will be 75% tomorrow.
Verification : Calculate error ?
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' Introduction

= How do we know if a probabilistic forecast was “correct”?

“A probabilistic forecast can never be wrong!”’
As soon as a forecast is expressed probabilistically, all
possible outcomes are forecasted. However, the
forecaster’'s level of confidence can be “correct” or
“incorrect” = reliable.

Is the forecaster over- / under-confident?

Whenever a forecaster says there is a high probability

of rain tomorrow, it should rain more frequently than
I when the forecaster says there is a low probability of

rain (see reliability diagrams).
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' Preliminary question

F How do we know that a forecast is « good » ?

@ In case of Impact Forecast (tailored e.g. for DMP)

»Verification ?

»Depends on the usefulness for the user

»Needs of reference dataset from the user side (Impacts,
Decisions, ...)

» Verification of the use and better decision still to be
developped (e.g. Placebo protocol). The problem is more
complex !
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Other component of the climate system

ROC scores for Hydro-SF (1979-2007 — IC from 1st of April)
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' Preliminary question

E How do we know that a forecast is « good » ?

@ What makes a « good » forecast ?

» Quality : the outcome should correspond with the forecast

» Timeliness : the forecast must be issued early enough for
response

» Uncertainty : the forecast must be about something that was
not inevitable

» Salience : the forecast must be about something of interest
(including timeliness)

» No ambiguity : the precise meaning of the forecast should not
be subject to interpretation

i » Consistency : the forecast should indicate what the forecaster

believes will happen
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' Preliminary question

F How do we know that a forecast is « good » ?

@ What make a « good » forecast ?
> Quality
Good forecast should corresponds to the outcome
— Examples :
Obama will win the US election President for the second time
OND1997 rainfall over Nairobi will be above-normal

— Note that correctness is only one aspect of the quality.

» Timeliness
Good Forecast should be issued at a relevant time for use
— Examples :
F. Hollande will win the 2012 French President election (the day

I of election at 20:01 when announcemed on the TVs)

October SWIOCOF forecasts are too late for Tourism sector
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' Preliminary question

F How do we know that a forecast is « good » ?

@ What make a « good » forecast ?

» Uncertainty
Good forecast should address something uncertain
—  Examples : JPC will win the French President Election next
year
It will rain less than 2000 mm in Niamey next rainy season
> Salience
Good Forecast should target something of interest
— Examples : There will be some Orchids in my garden next
September (Who cares?)
The T500 hPa anomaly of November 2016 over France will be
I 1°C more than 20 years ago
—  Often the relevancy of a forecast is not obvious because of
the way the forecast is presented
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' Preliminary question

F How to score a « good » forecast ?

@ Properties of scoring rules

» Equitability : Equitable scores must score all « unskilful »
forecasts equally badly

» Propriety : Proper scores are those that are optimized when the
forecaster forecasts what (s)he thinks is the correct forecast.

— If the score is not proper, the forecaster can cheat or hedge (issue

a different forecast to get a better score).

> Effectiveness : An effective score must give a better score to

a “better” forecast.
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Equitability

Near-misses

FORECASTS
OBSERVATIONS B N A
A -1.0 0.0 1.0
N 0.0 1.0 0.0
B 1.0 0.0 -1.0

Exercise: Is the scoring table above a good idea?
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Gerrity Score

FORECASTS
OBSERVATIONS B N A
A -1.00 -0.25 1.25
N -0.25 0.50 -0.25
B 1.25 -0.25 -1.00

This solution has some simpler properties.
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Propriety

How many of the events were forecast?

Hit rate - number of hits « 100%

number of events

A score of 100% can be guaranteed by always forecasting
an event!

False alarms are incorrect forecasts.

Equitability v propriety.
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' Preliminary question

F How to score a « good » forecast ?

@ Properties of scoring rules

» Consideration of distances : A score which consider
distances should credit forecasts that issue high probabilities for
values close to the verification.

»Understandability : It is essential to define exactly what is the
purpose of the verification analysis so as to choose an
appropriate score.

» Locality : A score which consider locality must only score the
forecast on the basis of the probability assigned to the verification.

— The property of locality is inconsistent with the consideration of

distance.
1
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Effectiveness

Consider the probability score (the average squared
probability error over all categories):
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Linear Error in Probability Space (LEPS)

FORECASTS
OBSERVATIONS B N A
A -0.78 -0.11 0.89
N -0.11 0.22 0.11
B 0.89 -0.11 -0.78

These weights are defined to ensure that forecasts

of climatology AND perpetual forecasts of one

category AND random guessing have an expected

. score of zero.
{c2) wMO OMM
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' Preliminary question

F How do score a « good » forecast ?

@ What make a « good » forecast ?
» Ambiguity
Good forecast should not be ambiguous (not subject to
interpretation)
—  Examples : France will do well for the next Rugby World Cup
SEE region will have a good winter season
» Consistency
Good Forecast should be consistent with the believes of the
forecaster
— Examples : P Ryan will win the 2012 US Vice-President.
The next OND 1997 rainy season in Ruiru (Kenya) will be close to
I Normal (Reluctance to forecast high probabilities of Above-
normal rainfall?)
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Distance

The ranked probability score resolves the lack of
effectiveness of the probability score:
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Locality

Considering distance does not necessarily give the
best score to the forecast with the highest probability
on the verifying category:

Red: {52%, 33%, 15%}
Blue: {50%, 45%, 5%}

If B occurs, the scores are:

Red: 0.0843
Blue: 0.0842
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Interpretation of scores

MSE
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Amplitude error
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M Systematic error

where : MSE=Mean Squared Error
F  for Forecasts

¢ for Climatology

avec : var = variance
mean = mean
cor = correlation
n = size of sampling
o for observation
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' Interpretation of scores

Brier score (Murphy’s decomposition)

Brier score = reliability — resolution + uncertainty

Resolution : when the forecast is 60% for dry, is
the outcome the same as when the
forecast is 10% for dry?

Reliability :  when the forecast is 60% for dry, do
dry conditions occur 60% of the time?

Uncertainty : what is the climatological probability
of dry conditions occurring?
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E Some examples

é

Key Stations used by the SMEAG

WMO OMM

Daily river flows

Daily river filows

Verification for tailored information

Seine @ Pont-sur-Seine 1992

Good forecast for DMP !
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Seine @ Paris 1980

Good forecast for DMP !

Rar
", Obs.

1—vigilance.

ime

Forecast - Daily Time Series of
ensemble Median, Q10 and Q90
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' Interpretation of scores

Brier score

Measures the mean-squared error of probability
forecasts (equivalent of MSE for deterministic forecast).

total of squared probability errors
number of forecasts

Brier score=

If an event was forecast with a probability of 60%,
| and the event occurred, the probability error is:
60% - 100% =-40% and BS contribution is 0.16
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Frecipitation Frobabilities for DJF
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Frecipitation Probabilities for JJA Frecipitation Probabilities for JJA
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Reliability
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Resolution
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'Measures of Reliability and Sharpness

Ranked probability score

The same as the Brier score, but for multiple
categories.

The Brier score and the ranked probability score
can be expressed as skill scores in the same way
as for the Heidke (hit) score.

Verification measures for continuous probabilistic
forecasts are experimental — there are very few

] attempts to estimate the full probability distribution
of possible outcomes.
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