Hybrid (empirical-dynamical) EUROBRISA forecasting system

Caio A. S. Coelho

Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) Instituto Nacional de Pesquisas Espaciais (INPE)

caio.coelho@cptec.inpe.br

The Leverhulme Trust

SPF

al-to-decadal climate Prediction for ovement of European Climate Ser

1.Introduction: seasonal precipitation prediction practice in South America
2.EUROBRISA forecasting system and its evolution
3.System performance since 2007
4.Contribution to seasonal forecasting practice in S. America
5.Summary

MedCOF Training Workshop on Verification of Operational Seasonal Forecasts in the Mediterranean region *Rome, Italy, 15-18 November 2016*

Introduction

Seasonal prediction: Expected (mean) climate conditions for next 3-6 months

Aug

Jul

Sep Oct Nov Dec Jan

South American seasonal precipitation predictions have been produced since around the mid-nineties using both *empirical (statistical) models* and physically based *dynamical models*

Empirical (statistical): based on past (historical) observations for the predictand (e.g. precipitation over South America) and for relevant predictors (e.g. SST) Dynamical: based on prognostic physical equations

- 2-tier systems (first predict SST, next climate variables)
- 1-tier systems (predict ocean and atmos. together)

Both empir. and dyn. predic.are expressed probabilistically

Comparing statistical and dynamical prediction systems:

Advantages

Disadvantages

	 Entirely based on real-world past climate observations Simple to build: many climate relationships are quasi-linear, quasi-Gaussian Cheap (fast) to run 	 Depends on quality and length of past climate observations Does not fully account for changes in climate or new climate conditions
Dyna- mical		 Physical laws must be abbreviated or statistically estimated, leading to errors and biases Expensive to run (require powerful computers)

Seasonal forecast availability

- Empirical/statistical models
- Dynamical atmospheric models
- Dynamical coupled (ocean-atmosphere) models

EUROBRISA conception

http://eurobrisa.cptec.inpe.br

Why not combine all available state-of-the-art forecast information from both sources (empirical and dynamical)?

EUROBRISA Integrated (combined and calibrated) precipitation seasonal forecasting system for South America

EUROBRISA aims

- Strengthen collaboration and promote exchange of expertise and information between European and South American climate scientists;
- Produce improved seasonal climate forecasts for South America using recent scientific advances in both coupled ocean-atmosphere modelling and statistical calibration and combination of multi-model ensemble forecasts;
- Develop forecast products for non-profitable governmental use in South America (e.g. reservoir management, hydropower production, agriculture and health).

A GREAT OPPORTUNITY TO DO SOMETHING REALLY USEFUL!

Why South America?

EUROBRISA key Idea: To improve seasonal forecasts in S. America a region where there is seasonal forecast skill and useful value

Application areas in need of seasonal forecasts

→ Electricity: Brazil, about 70% produced by

hydropower stations

→ Agriculture (e.g. crop yield)

\rightarrow Health (e.g. dengue)

The Empirical model

 $\begin{aligned} Y|Z &\sim N \left(M \left(Z - Z_o \right), T \right) \\ Y: \text{ DJF precipitation} \\ Z: \text{ October sea surface temp. (SST)} \\ M &= S_{YZ} S_{ZZ}^{-1} \qquad Y: n \times q \\ -M &Z_o = \overline{Y} - \overline{Z}M \qquad Z: n \times v \\ T &= S_{YY} - S_{YZ} S_{ZZ}^{-1} S_{YZ}^T \qquad T: q \times q \end{aligned}$

Model uses first three leading Maximum Covariance Analysis (MCA) modes of the matrix Y^TZ. Data sources:

• SST: Reynolds OI v2 Reynolds *et al.* (2002)

• Precipitation: GPCP v2 Adler *et al.* (2003)

Coelho *et al.* (2006) *J. Climate, 19*, 3704-3721

First version: EUROBRISA integrated forecasting system for South America

 \rightarrow Combined and calibrated coupled + empirical precip. forecasts \rightarrow Hybrid multi-model probabilistic system

Coupled model	Country
ECMWF System 3	International
UKMO (GloSea 3)	U.K.

Empirical model Predictors: Atlantic and Pacific SST Predictand: Precipitation Coelho *et al.* (2006) *J. Climate, 19*, 3704-3721

Produced with forecast assimilation Stephenson et al (2005) Tellus A . Vol. 57, 253-264

Integrated forecast

Hindcast period: 1987-2001 Implemented in Oct 2007

Conceptual framework

Stephenson et al. (2005)

Motivation for use of multi-model ensemble

Sampling of two sources of uncertainties:

- initial conditions
- model formulation

Courtesy: Francisco Doblas-Reyes

Calibration and combination procedure:

Forecast Assimilation
Stephenson et al. (2005)
Tellus, 57A, 253-264 $p(Y | X) = \frac{p(X | Y)p(Y)}{p(X)}$ Prior: $Y \sim N(Y_b, C)$ X: precip. fcsts (coupled + empir.)Y: DJF precipitation

Forecast assimilation uses the first three MCA modes of the matrix $Y^T X$.

Calibration and combination procedure: Forecast Assimilation X: precip. fcsts (coupled + empir.) Stephenson et al. (2005) Y: DJF precipitation Tellus, 57A, 253-264 **If prior param.:** $Y_{h} = \overline{Y}$ $C = S_{YY}$ Matrices $Y | X \sim N(L(X - X_0), D)$ FA becomes: $X:n \times p$ $L = S_{vv}S_{vv}^{-1}$ $Y:n \times q$ $-LX_{o} = Y - XL$ $Y_h: 1 \times q$ $\mathbf{D} = \mathbf{S}_{\mathbf{v}\mathbf{v}} - \mathbf{S}_{\mathbf{v}\mathbf{x}}\mathbf{S}_{\mathbf{v}\mathbf{x}}^{-1}\mathbf{S}_{\mathbf{v}\mathbf{x}}^{\mathrm{T}}$ $C:q \times q$ $\mathbf{Y}_{a}:\mathbf{n}\times\mathbf{q}$ $Y | X \sim N(Y_a, D)$ **Posterior:** $D:q \times q$ $Y_a = Y_b + L(X - X)$

Can precipitation forecasts over the Pacific help improve forecasts over land?

GPCP rainfall DJF 1997/98

Taking advantage of forecast skill over the Pacific to improve forecasts over land

Source: Franco Molteni (ECMWF)

EUROBRISA integrated forecasting system for South America

- →Combined and calibrated coupled + empirical precip. forecasts
- \rightarrow Hybrid multi-model probabilistic system

Couple modelCountryECMWF Sys 4InternationalUKMO GloSea 4U.K.Meteo-France Sys 3FranceCPTECBrazil

Integrated forecast

Empirical model Predictors: Atlantic and Pacific SST Predictand: Precipitation Coelho *et al.* (2006) *J. Climate, 19*, 3704-3721

Produced with forecast assimilation Stephenson et al (2005) Tellus A . Vol. 57, 253-264

Hindcast period: 1981-2005

Implemented in Mar 2012

Can skill be improved by adding more models to the system and using forecasts over the Pacific?

Correlation skill: Integrated forecast (precipitation)

South America domain: ECMWF, UKMO and empirical (limited to common hindcast period) South America + Pacific domain: ECMWF, UKMO, MF, CPTEC and empirical (diff. hind. periods)

→ Adding more models and using precip. fcsts over Pac. does help improve fcst. skill in S. America

How reliable are EUROBRISA integrated precipitation forecasts?

Forecast probability, yi

South America domain: ECMWF, UKMO and empirical (limited to common hindcast period) Reliability diagram: Integrated (1981-2005) Issued: Nov Valid for DJF Event: positive or negative precip. anomaly

Forecast probability, yi

South America + Pacific domain: ECMWF, UKMO, MF, CPTEC and empirical (diff. hind. periods)

 \rightarrow Current system (right) has improved reliability comp. to previous (left)

How did the EUROBRISA integrated forecasting system perform since 2007?

La Niña 2007/2008/2009

NINO3.4 SST forecast anomalies

ECMWF forecasts at month 5

Ensemble sizes are 40 (0001), 40 (0001) and 40 (0001) SST obs: NCEP Olv2

The EUROSIP multimodel captured well the onset, amplitude and long duration of La Nina conditions

Issued: May 2007

Prob. of most likely precip. tercile (%)

Observed precip. tercile

Obs. SST anomaly Apr 2007

Gerrity score (tercile categories)

Issued: Aug 2007

Prob. of most likely precip. tercile (%)

Observed precip. tercile

Obs. SST anomaly Jul 2007

EUROBRISA integrated forecast for DJF 2007/2008

Issued: Nov 2007

Prob. of most likely precip. tercile (%)

Observed precip. tercile

Obs. SST anomaly Oct 2007

Gerrity score (tercile categories)

Issued: Feb 2008

Prob. of most likely precip. tercile (%)

Observed precip. tercile

Obs. SST anomaly Jan 2008

Gerrity score (tercile categories)

Coleine

White=central tercile most likely

Issued: Feb 2009

Prob. of most likely precip. tercile (%)

Observed precip.

Obs. SST anomaly Jan 2009

Gerrity score (tercile categories)

Celsius

Issued: Feb 2010

Prob. of most likely precip. tercile (%)

Observed precip.

Issued: Feb 2011

Prob. of most likely precip. tercile (%)

Issued: Feb 2015

Prob. of most likely precip. tercile (%) 0 -10 -20 -30 -40 -50 CPTEC/INPE/EUROBRISA product -60 -80 -70 -30 Lower tercile Upper tercile 80-100 70-80 50-70 40-50 50-70 70-80 80-100 40-50 White=central tercile most likely

Observed precip. MAM/2015 Anomalia Precipitacao

EUROBRISA integrated fcst for MAM 2016 Issued in Feb 2016

Empirical (based on Jan 2016 SST) and integrated forecasts indicated pronounced deficit over NE Brazil

80-100 70-80 50-70 40-50 40-50 50-70 70-80 80-100 80-100 70-80 50-70 40-50 40-50 50-70 70-80 80-100 White=central tercile most likely White=central tercile most likely

A EURO-BRazilian Initiative for Improving South American Season

The Leverhulme Trust

EUROBRISA Integrated (empirical-dynamical combined and calibrated) precipitation seasonal forecasting system for South America

Collaborative effort: INPE/CPTEC, Univ. Exeter, ECMWF, UK Met Office, Météo-France, UFPR, USP and INMET

Previously supported by:

Currently supported by:

Integrated: Prob. of most likely precip. tercile (%) Issued: Oct 2016 Valid for NDJ 2016

Current EUROBRISA integrated forecasting system for South America

→Combined and calibrated coupled + empirical precip. forecasts
 →Hybrid multi-model probabilistic system

Couple modelCountryECMWF Sys 4InternationalUKMO GloSea5 GC2U.K.Meteo-France Sys 5France ← NEW

Updated empirical model Predictors: Atlantic and Pacific SST Predictand: Precipitation Coelho *et al.* (2006) *J. Climate, 19*, 3704-3721

Hindcast period: 1981-2010

Tellus A . Vol. 57, 253-264

Updated in July 2016

EUROBRISA integrated fcst for NDJ 2016/17 **Issued in Oct 2016: Most recent forecast**

-50

Upper tercile

40-50 50-70 70-80 80-100

80-100 70-80 50-70 40-50 40-50 50-70 70-80 80-100 White=central tercile most likely

Obs. SST anomaly Sep 2016

Prob. of most likely precipitation tercile (%)

EUROBRISA fcsts disseminated in NCOFs/RCOFs in South America

New version of EUROBRISA system updated Jul 2016

EUROBRISA: A EURO-BRazilian Initiative for im	proving South American seasonal forecast
Home Weather Climate Numerical Forecasts Energy Satellites Waves Observat	ional Data Met. Instrumentation Air Quality
RODUCTS. http://eurobrisa.cptec.inpe.br	Key idea: To improve seasonal forecasts in South America, a region where there is seasonal forecast skill and useful value
orecast Type: Prob. most lik. tercile 👽	→ HOME
 Products documentation) Previous EUROBRISA operational System (operational until Jun 2016) 	AIMS
Integrated: Prob. of most likely precip. tercile (%) Issued: Oct 2016 Valid for NDJ 2016	 Strengthen collaboration and promote exchange of expertise and information between European and South American seasonal forecasters Produce improved well-calibrated real-time probabilistic seasonal forecasts for South America Develop real-time forecast products for non-profitable governmental use (e.g. reservoir management, hydropower production, and agriculture). PROJECT INFORMATION
-10-	 → History → Partners ■ DOCUMENTS
-20	 → EUROBRISA project proposal approved by ECMWF council in June 2005: see page 5 of ECMWF newsletter No. 104 → Leverhulme research network proposal → Powerpoint overview
	PRESENTATIONS

Hybrid (empirical-dynamical) multi-model ensemble system for South America

New version of EUROBRISA system updated Jul 2016

Hybrid (empirical-dynamical) multi-model ensemble system for South America

New version of EUROBRISA EUROSIP: ECMWF (System 4)

1-month lead forecasts

Hybrid (empirical-dynamical) multi-model ensemble system for South America

How has EUROBRISA contributed for improving seasonal forecasting practice in S. America?

Seasonal forecasting system before EUROBRISA

After EUROBRISA

Integrated forecasting system

Official forecast for Brazil for DJF 2010/2011

Acima da média histórica Próximas à média histórica

Abaixo da média histórica

EUROBRISA forecast

for DJF 2010/2011 Integrated: Prob. of most likely precip. tercile (%)

Issued: Nov 2010 Valid for DJF 2010

White=central tercile most likely

→EUROBRISA forecast helps define official seasonal forecast in Brazil

Summary: EUROBRISA forecast system

- Successful initiative bringing together expertise on coupled ocean-atmosphere seasonal forecasting and statistical calibration and combination of multi-model ensemble forecasts
- Developed novel integrated precipitation seasonal forecasting system for South America
- Helped improve and advance seasonal forecasting practice in South America by objectively combining empirical and dynamical model seasonal forecasts
- Integrated forecasting system has shown reasonable performance since its implementation in 2007
- Use of precip. forecasts over Pacific improves robustness of predictors and forecast skill over South America

Acknowledgements

- ECMWF, Météo France and UK Met Office for providing the seasonal forecast data for EUROBRISA
- Leverhulme Trust for funding the EUROBRISA network project (F/00144/AT)
- FAPESP foundation for research funding
- EU for funding the SPECS project that supported the maintenance of EUROBRISA

THANK YOU FOR YOUR ATTENTION!

EUROBRISA articles: forecasting system

Coelho C.A.S., 2010: A new hybrid precipitation seasonal forecasting system for South America. XVI Brazilian congress of meteorology. Coelho C.A.S., 2009: Hybrid precipitation seasonal forecasts for South America. 9th International Conference on Southern Hemisphere Meteorology and Oceanography. Coelho C.A.S., 2008: EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts. XV Brazilian congress of meteorology. Coelho C.A.S., D.B. Stephenson, F.J. Doblas-Reyes, M. Balmaseda and R. Graham, 2007: Integrated seasonal climate forecasts for South America. CLIVAR Exchanges. No.43. Vol. 12, No. 4, 13-19. Tim E. Jupp, T. E., R. Lowe, C.A.S. Coelho and D. B. Stephenson, 2012: On the visualization, verification and recalibration of ternary probabilistic forecasts. Phil. Trans. R. Soc. A, 370, 1100-1120

Available at http://eurobrisa.cptec.inpe.br/publications.shtml