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Plan of lecture 
• Introduction: Examples of forecasts
• Brier score and its decomposition: reliability, resolution and uncertainty
• Reliability diagram
• Exercise on Brier score, its decomposition and reliability diagram 
• ROC: discrimination
• Exercise on ROC



Examples of forecasts
• Deterministic forecasts for Jakarta:

Tomorrow´s max. temperature forecast: 32 Celsius
Season (JJA) average temperature forecast: 26.5 Cesius
Season (JJA) total precipitation forecast: 200 mm
Verification: comparison of fsct and obs values using
deterministic scores

• Probabilistic forecasts for Jakarta
Probability of tomorrow´s max. temperature to be
above 30 Celsius is 90%
Probability of next season (JJA) ave. temp. to be above
26.5 Cesius is 40%
Probability of next season (JJA) total. precip. to be
below 70 mm is 30%
Verification: comparing of fsct prob and occurrence (or
non-occurrence) of event using probabilistic scores
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Examples of probabilistic seasonal forecasts: JJA 2mT

T=25oC

F is a set of probabilities 
for the discrete values of O

F:  0.4, 0.3, 0.5, 0.1, 0.6, 0.2
O:   1  ,  1  ,  0  ,  1  ,  0  ,  0

T=15oC T=30oC

F is a probabilistic interval
of values for O (interval forecast)

F:  0.7, 0.6, 0.5, 0.8, 0.7, 0.5
O:   0  ,  1  ,  0  ,  1  ,  1  ,  0

F is a full probability distribution
function for O
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Probability scores
Imagine the following set of probability forecasts for a series 
k=1,2,…,n=6 of binary events:

k 1 2 3 4 5 6
o 0 1   1 0  0    0   
p 0.7 0.6 0.2 0.8  0.9 0.3

The forecast skill can be measured using scores such as:

Note: small values indicate good quality forecasts! 
For a perfect forecast p=o and the score equals zero.
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Skill Scores
The scores are often presented as skill scores by using the linear 
transformation:

where Sref is the value of the score for some 
unskilful reference forecast such as:

• Issuing the same constant probability each time
• Issuing random probabilities each time

Note: both of these can be thought of as sampling a probability from a distribution (constant 
probability is a special limit of zero width distribution)

Skill scores allow easy interpretation of forecasts:
0  no skill forecast
1  perfect forecast
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Forecast attributes assessed with the 
Brier score and reliability diagram

• Reliability: correspondence between forecast
probabilities and observed relative frequency (e.g. an
event must occur on 30% of the occasions that the
30% forecast probability was issued)

• Resolution: Conditioning of observed outcome on the
forecasts

• Addresses the question: Does the frequency of
occurrence of an event differs as the forecast
probability changes?

• If the event occurs with the same relative frequency
regardless of the forecast, the forecasts are said to
have no resolution

• Forecasts with no resolution are useless because the
outcome is the same regardless of what is forecast
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Brier Score decomposition (Murphy, 1973)
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Uncert.Reliability Resolution

The Brier score can be improved (reduced):
• forecasting events of small var(o)=o(1-o) (reduced uncertainty) 
• increasing resolution (eg. combining forecasts) 
• improving reliability (eg. calibrating forecasts) 
Note: It is common practice to decompose the Brier score in reliability
and resolution for examining which component can be improved

1,9.0...,,2.0,1.0,0:11,...,1 1110321  pppppli
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Reliability diagram
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Event: SST>0
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Blue dot: Climatological forecast
Perfectly reliable: Rel=0
Has no resolution: Res=0

Reliability diagram

Event: SST>0



10

Example of how to construct a reliability diagram

700 (10%) 0 (   0%) 70000%

800 (15%) 550 ( 10%) 550010%

….….….….

…. ….….….

….….….….

3000 (66%) 3600 ( 80%) 450080%

4000 (80%) 4500 ( 90%) 500090%

7200 (90%) 8000 (100%) 8000100%

“Real fcst.” 
OBS-Freq( oi ) 

“Perfect fcst.”
OBS-Freq.( oi ) 

# 
Fcsts. 

Ni

Forecast 
Prob.(pi) 

0

0

0

Sample of probability forecasts: 
22 years x 3000 grid points = 66000 forecasts

How many times the event (T>0) was forecast with probability pi?

Courtesy: Francisco Doblas-Reyes
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Example of how to construct a reliability diagram
Sample of probability forecasts: 

22 years x 3000 grid points = 66000 forecasts
How many times the event (T>0) was forecast with probability pi?

Courtesy: Francisco Doblas-Reyes
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Reliability diagram

Over-confident forecasts Perfect forecasts

Courtesy: Francisco Doblas-Reyes
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Under-confident forecasts Perfect forecasts

Reliability diagram

Courtesy: Francisco Doblas-Reyes
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Example:Equatorial Pacific SST

SST anomalies (°C) Forecast probabilities: f

The probability forecasts 
were constructed by 
fitting Normal 
distributions to the 
ensemble mean 
forecasts from the 7 
DEMETER coupled 
models, and then 
calculating the area 
under the normal density 
for SST anomalies 
greater than zero. 

SST ( 0)o SST 

OBS OBS ENS 

88 seasonal probability forecasts of binary SST 
anomalies at 56 grid points along the equatorial 
Pacific. Total of 4928 forecasts.
6-month lead forecasts for 4 start dates (F,M,A,N)
valid for (Jul,Oct,Jan,Aug)

ˆPr( )f o



Exercise 1:
Read data file equatorialpacificsst.txt which contains
forecast probabilities for the event Eq. Pac. SST>0
and the corresponding binary observations

data<-read.table(“equatorialpacificsst.txt”)

#1st column contains forecast probabilities
probfcsts<-data[,1]

#2nd column contains binary observation
binobs<-data[,2]



#Compute the climatological frequency of the event
obar<-mean(binobs)

#Compute the Brier score for the climatological frequency
#(i.e. the climatological forecast)
bsclim<-mean((obar-binobs)^2)

#Compute the variance of binary observation
var(binobs) *(length(binobs)-1)/length(binobs)

#Compute the uncertainty component of the Brier score
obar*(1-obar)
#How does this compare with the Brier score computed 
#above? What can you conclude about the reliabilty and
#resolution components of the Brier score for the 
#climatological forecast?



#Compute the Brier score for the SST prob. forecasts
#for the event SST>0
bs<-mean((probfcsts-binobs)^2)

#How does this compare with the Brier score for the
#climatological forecast? What can you conclude about the
#skill of these forecasts (i.e. which of the two are more
#skillfull by looking at their Brier score values)?

#Compute the Brier skill score
bss <- 1-(bs/bsclim)

#How do you interpret the Brier skill score obtained
#above? I.e. what can you conclude about the skill of the SST
#prob. forecasts when compared to the climatological
#forecast?



#Use the verification package to compute the Brier score and
#its decomposition for the SST prob. forecasts for 
#the event SST>0
library(verification)
A<-verify(binobs,probfcsts, frcst.type="prob",obs.type="binary")
summary(A)

#Note: Brier score – Baseline is the Brier score for the
#reference climatological forecast
#Skill Score is the Brier skill score
#Reliability, resolution and uncertainty are the three 
#components of the Brier score decomposition

#What can be conclude about the quality of these forecasts
#when compared with the climatological forecasts?



#Construct the reliability diagram for these forecasts using
#10 bins
nbins<-10
bk<-seq(0,1,1/nbins)
h<-hist(probfcsts,breaks=bk,plot=F)$counts        
g<-hist(probfcsts[binobs==1],breaks=bk,plot=F)$counts
obari <- g/h                                                    
yi <- seq((1/nbins)/2,1,1/nbins)

par(pty='s',las=1)
reliability.plot(yi,obari,h,titl="10 bins",legend.names="")
abline(h=obar)

#What can you conclude about these forecasts by examining
#the feature of the reliability diagram curve?



# Compute reliability, resolution and uncertainty components
# of the Brier score 
n<-length(probfcsts)
reliab <- sum(h*((yi-obari)^2), na.rm=TRUE)/n
resol <- sum(h*((obari-obar)^2), na.rm=TRUE)/n
uncert<-obar*(1-obar)
bs<-reliab-resol+uncert

#How does the results above compare with those obtained
#with the verify function?



Discrimination
• Conditioning of forecasts on observed outcomes
• Addresses the question: Does the forecast 

(probabilities) differ given different observed 
outcomes? Or, can the forecasts distinguish 
(discriminate or detect) an event from a non-event?
Example: Event (Positive SST anom. observed)

Non-event (Positive SST anom. not obs)
• If the forecast is the same regardless of the outcome, 

the forecasts cannot discriminate an event from a 
non-event

• Forecasts with no discrimination ability are useless 
because the forecasts are the same regardless of 
what happens



Important notes about 
events and non-events

• Example: event (precip. obs. in upper tercile)
non-event (precip. not obs. in upper tercile)

• Events and non-events are complementary
• Events can happen (occur) or not happen (not occur)
• If fcst probability for an event to happen is 80% this

indicates high confidence for the event to happen
• If fcst probability for an event to happen is 20% this indicates 

high confidence for the event not to happen
• Will see that in ROC curve (used to assess discrimination or 

distinction btw events and non-events):
a) high confidence that an event will happen will appear in 
points located at the bottom left of ROC curve;
b) high confidence that an event will not happen will appear 
in points located at the top right of ROC curve



Important notes about 
events and non-events

• As events and non-events are binary (i.e have 2 possible outcomes) 
the probability of correctly discriminating (distinguishing) and event 
from a non-event is 50%

• Example: 
- Lets say we have two years: 1990 and 1999 
- We know in one year (1990) precip in upper tercile was observed
- We also know that in the other year (1999) precip in upper tercile 
was not observed
- if in 1990 the fcst prob for precip in upper tercile was p=80% 
and in 1999 the fcst prob for precip in upper tercile was p=10% then 
we successfully discriminated btw the event and the non-event

• The ROC area will tell us the probability of successfully discriminating 
an event from a non event. (How different fcst probilities are for 
events and non events)



ROC: Relative operating characteristics
Measures discrimination (ability of forecasting system
to detect the event of interest)

Forecast Observed
Yes No Total

Yes a (Hit) b (False alarm) a+b
No c (Miss) d (Correct rejection) c+d

Total a+c b+d a+b+c+d=n

Hit rate=a/(a+c)
False alarm rate=b/(b+d)
ROC curve: plot of hit versus false-alarm rates for decreasing 
prob. thresholds



• The ROC curve is constructed by calculating the hit and false-alarm rates
for decreasing probability thresholds 
• Area under ROC curve (A) is a measure of discrimination: A = 0.79 (prob. of
successfully discriminating a warm (SST>0) from a cold (SST<0) event)



• The ROC curve is constructed by calculating the hit and false-alarm rates
for decreasing probability thresholds 
• Area under ROC curve (A) is a measure of discrimination: A = 0.79 (prob. of
successfully discriminating a warm (SST>0) from a cold (SST<0) event)

Shallow curve at top 
indicates forecasts with 
low probabilities are 
good. 
Good ability to indicate 
that a warm event
will not occur.

Steep curve at bottom 
indicates forecasts with 
high probabilities are 
good.
Good ability to indicate 
that a warm event
will occur.



Exercise 2:
Read data file equatorialpacificsst.txt which contains
forecast probabilities for the event Eq. Pac. SST>0
and the corresponding binary observations

data<-read.table(“equatorialpacificsst.txt”)

#1st column contains forecast probabilities

#2nd column contains binary observations
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Prob. forecasts conditioned/stratified 
on observations

 Forecasts do differ given different outcomes
 Forecast system has discrimination (distinguish event from non-event)

Observed binary event X

Forecast 
probability Pr(SST>0)

Non event
SST>0 not obs

Event
SST>0 obs



Reproducing the previous plot
1) Stratify forecast probabilities p (1st column of data) 

on observed (1) and not observed (0) binary events 
(2nd column od data)

d1 #object containing strat of p on not observed event
> d1<-data[data[,2]==0,1]
d2 #object containing strat of p on observed event
> d2<-data[data[,2]==1,1]
2) Produce a boxplot using the command
> boxplot(d1,d2,col=c(2,5),notch=T,names=c(0,1))



# extract only forecast/obs pairs with p >=0.9
p<-0.9
# forecast events
f<-data[data[,1]>=p,]
a<-sum(f[,2]==1) #forecast and observed (hit)
b<-sum(f[,2]==0) #forecast and not observed (false alarm)
# not forecast events
g<-data[data[,1]<p,] 
c<-sum(g[,2]==1) #not forecast and observed (miss)
d<-sum(g[,2]==0) #not fcst and not obs (correct rejection)
n<-a+b+c+d
hr<-a/(a+c)
far<-b/(b+d)



#Plot first point of the ROC curve
par(pty='s',las=1)
plot(far,hr,type="p",pch=16,xlim=c(0,1),ylim=c(0,1),xlab="Fals
e alarm rate",ylab="Hit rate")
abline(0,1)



#repeat the same procedure for p>=0.8

#extract only forecast/obs pairs with p >=0.8
p<-0.8
# forecast events
f<-data[data[,1]>=p,]
a<-sum(f[,2]==1) #forecast and observed (hit)
b<-sum(f[,2]==0) #forecast and not observed (false alarm)
# not forecast events
g<-data[data[,1]<p,] 
c<-sum(g[,2]==1) #not forecast and observed (miss)
d<-sum(g[,2]==0) #not fcst and not obs (correct rejection)
n<-a+b+c+d
hr<-a/(a+c)
far<-b/(b+d)



#Plot new point in the ROC curve
points(far,hr,pch=16)

#repeat the same procedure for p>=0.7, p>=0.6, p>=0.5,
#p>=0.4, p>=0.3, p>=0.2 and p>=0.1 adding the new points
#in the ROC curve. Try later to do this using a for loop.

#The area below the curve that joins all points (the ROC
#area) is a forecast skill measure of discrimination.
#ROC area values equal 0.5 indicate no skill. 
#ROC area values equal to 1 indicate perfect discrimination.
#ROC area values equal to 0 indicate perfectly bad 
#discrimination. 



#Constructing the empirical ROC curve

#find unique forecast probability values
p<-unique(data[,1]) 
#sort unique fcst prob values from largest to smallest
p<-rev(sort(p))
#define vectors to store hit and false-alarm rates
hr<-rep(NA,length(p)+2)
far<-rep(NA,length(p)+2)
#set first and last point in the ROC curve to (0,0) and (1,1)
hr[1]<-0
far[1]<-0
hr[length(p)+2]<-1
far[length(p)+2]<-1



#compute hit and false alarm rates for all fcst prob thresholds
for (i in 1:length(p)){
f<-data[data[,1]>=p[i],] #forecast events
a<-sum(f[,2]==1) #hit
b<-sum(f[,2]==0) #false alarm
g<-data[data[,1]<p[i],] # not forecast events
c<-sum(g[,2]==1) #miss
d<-sum(g[,2]==0) #correct rejection
hr[i+1]<-a/(a+c)
far[i+1]<-b/(b+d)
}
#plot empirical ROC curve
par(pty='s',las=1)
plot(far,hr,type="l",xlim=c(0,1),ylim=c(0,1),xlab="False alarm 
rate",ylab="Hit rate")
abline(0,1)



#plot roc curve with verification package for comparison
x11()
roc.plot(data[,2],data[,1])

#compute area under empirical ROC curve
dif<-diff(far)
area<-sum(0.5*(hr[1:((length(hr)-1))]+hr[2:length(hr)])*dif)

#compute ROC area using the verification package
roc.area(data[,2],data[,1])

#The ROC skill score is defined as (2*ROC area)-1
#so that positive values indicate good discrimination skill
#and negative values indicate bad discrimination skill
rss<-2*area-1


