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Examples of forecasts

» Deterministic forecasts for Jakarta:
Tomorrow’s max. temperature forecast: 32 Celsius
Season (JJA) average temperature forecast: 26.5 Cesius
Season (JJA) total precipitation forecast: 200 mm

Verification: comparison of fsct and obs values using
deterministic scores

e Probabilistic forecasts for Jakarta

Probability of tomorrow’'s max. temperature to be
above 30 Celsius is 90%

Probability of next season (JJA) ave. temp. to be above
26.5 Cesius Is 40%

Probability of next season (JJA) total. precip. to be
below 70 mm is 30%

Verification: comparing of fsct prob and occurrence (or
non-occurrence) of event using probabilistic scores



Examples of probabilistic seasonal forecasts: JJA 2mT

F is a set of probabillities
for the discrete values of O

F: 04,0.3,0.5,0.1,0.6,0.2
O:1,1,0,1,0,0

T=25°C

F is a probabilistic interval
of values for O (interval forecast)

F: 0.7,0.6,0.5,0.8,0.7,0.5
O:0,1,0,1,1,0

T=15°C  T=30°C

F is a full probability distribution
function for O




Probability scores

Imagine the following set of probability forecasts for a series
k=1,2,...,n=6 of binary events:

1 3 4 S 6
0 1 1 0 0 0
0.7 0.6 0.2 0.8 0.9 0.3

The forecast skill can be measured using scores such as:
1 . :
BS==)>(p,—0,)* Brier score
N\
1 n
A==>|p,—0,| Mean Absolute score
N\
1 L
C :—Z(—(l—ok) log(1- p,)—o, log p,) Logarithmic score
N\

Note: small values indicate good quality forecasts!
For a perfect forecast p=0 and the score equals zero.



Skill Scores

The scores are often presented as skill scores by using the linear

transformation:
35 — S_Sref . S_Sref —1_ S
Sbest o Sref 0-— Sref S
where S, is the value of the score for some
unskilful reference forecast such as:

ref

Issuing the same constant probability each time
Issuing random probabilities each time

Note: both of these can be thought of as sampling a probability from a distribution (constant
probability is a special limit of zero width distribution)

Skill scores allow easy interpretation of forecasts:
0 - no skill forecast
1 - perfect forecast

BSS=1-BS/BS,,.



Forecast attributes assessed with the

Brier score and reliability diagram

* Reliability:  correspondence  between  forecast
probabilities and observed relative frequency (e.g. an
event must occur on 30% of the occasions that the
30% forecast probability was issued)

 Resolution: Conditioning of observed outcome on the
forecasts

» Addresses the question: Does the frequency of
occurrence of an event differs as the forecast
probability changes?

 If the event occurs with the same relative frequency

regardless of the forecast, the forecasts are said to
have no resolution

* Forecasts with no resolution are useless because the
outcome is the same regardless of what is forecast



Brier Score decomposition (Murphy, 1973)
BS=%Z(pk—ok)2 0<BS<1
k=1

| |
BS = EZ N;(p; —0;)° _EZ N;(0, -0)° +0(1-0)
|n i=1 | |n 1=1 o |
Reliébility Resolution Uncert.
_ 1 _ 1
Oi:p(ol‘pi):—zok 0=—) 0,
N; ken, N

1=1,..,1=11:p,=0,p,=0.1, p,=0.2,..., p,, =0.9,p,,=1

The Brier score can be improved (reduced):

» forecasting events of small var(o)=0(1-0) (reduced uncertainty)
 increasing resolution (eg. combining forecasts)

« improving reliability (eg. calibrating forecasts)

Note: It is common practice to decompose the Brier score in reliability
and resolution for examining which component can be improved
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Example of how to construct a reliability diagram
Sample of probability forecasts:

22 years x 3000 grid points = 66000 forecasts
How many times the event (T>0) was forecast with probability p,?

100% 8000 8000 (100%) 7200 (90%)
0 90% 5000 4500 (90%) 4000 (80%)

/r\ 80% 4500 3600 (80%) 3000 (66%)

10% 5500 550 ( 10%) 800 (15%)
0% 7000 0( 0%) 700 (10%)

Courtesy: Francisco Doblas-Reyes



Example of how to construct a reliability diagram

Sample of probabillity forecasts:
22 years x 3000 grid points = 66000 forecasts
How many times the event (T>0) was forecast with probability p,?

---- 100

100% 8000 8000 (100%) 7200 (90%)
90% 5000 4500 (90%) 4000 (80%) 'S
80% 4500 3600 (80%) 3000 (66%) ®
LL
W
al
O
0O 5
10% 5500 550 ( 10%) 800 (15%) FC-Prob.(pi)

0% 7000 0( 0%) 700 (10%)

Courtesy: Francisco Doblas-Reyes



Observed Frequency

Reliability diagram

Over-confident forecasts Perfect forecasts
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Observed Frequency

Reliability diagram

Under-confident forecasts Perfect forecasts

Reliability Diagram
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Example:Equatorial Pacific SST

88 seasonal probability forecasts of binary SST
anomalies at 56 grid points along the equatorial - (
Pacific. Total of 4928 forecasts. %&w

6-month lead forecasts for 4 start dates (F,M,A,N) ;22 Q

valid for (Jul,Oct,Jan,Auq) "
SST o=(ssT>0) f =Pr(0) = |
OBS OBS ENS -
e i : . The probability forecasts
2l . were constructed by
T mia Bt
bt IR 2 \ _ fitting Normal
ool | T, o _ ' distributions to the
col T |71 o L | ensemble mean
G 9ot : =
Sal | o 8o . forecasts from the 7
I 1 9z R
gaf T 93 I — DEMETER COUpIed
94| — i
ol - 2 E% ; models, and then
a7t _ e g
sl - : o _ . calculating the area |
op| ] n o under the normal density
0 = ol -5 01 :
150E 150W 30w 150E 150W 90W  150E 150W 90W for SST anoma“es
Longitude Longitude  Longitude greater than zero.

l l

SST-anomalies (°C) Forecast probabilities: f




Exercise 1:

Read data file equatorialpacificsst.txt which contains
forecast probabilities for the event Eq. Pac. SST>0
and the corresponding binary observations

data<-read.table(“equatorialpacificsst.txt”)

#15t column contains forecast probabllities
probfcsts<-datal,1]

#2"d column contains binary observation
binobs<-datal,2]



#Compute the climatological frequency of the event
obar<-mean(binobs)

#Compute the Brier score for the climatological frequency
#(1.e. the climatological forecast)
bsclim<-mean((obar-binobs)*2)

#Compute the variance of binary observation
var(binobs) *(length(binobs)-1)/length(binobs)

#Compute the uncertainty component of the Brier score
obar*(1-obar)

#How does this compare with the Brier score computed
#above? What can you conclude about the reliabilty and
#resolution components of the Brier score for the
#climatological forecast?



#Compute the Brier score for the SST prob. forecasts
#for the event SST>0
bs<-mean((probfcsts-binobs)*2)

#How does this compare with the Brier score for the
#climatological forecast? What can you conclude about the
#skill of these forecasts (i.e. which of the two are more
#skillfull by looking at their Brier score values)?

#Compute the Brier skill score
bss <- 1-(bs/bsclim)

#How do you interpret the Brier skill score obtained

#above? |.e. what can you conclude about the skill of the SST
#prob. forecasts when compared to the climatological
#forecast?



#Use the verification package to compute the Brier score and
#its decomposition for the SST prob. forecasts for

#the event SST>0

library(verification)

A<-verify(binobs,probfcsts, frcst.type="prob",obs.type="binary"
summary(A)

#Note: Brier score — Baseline is the Brier score for the
#reference climatological forecast

#Skill Score Is the Brier skill score

#Reliability, resolution and uncertainty are the three
#components of the Brier score decomposition

#What can be conclude about the quality of these forecasts
#when compared with the climatological forecasts?



#Construct the reliability diagram for these forecasts using
#10 bins

nbins<-10

bk<-seq(0,1,1/nbins)
h<-hist(probfcsts,breaks=bk,plot=F)$counts
g<-hist(probfcsts[binobs==1],breaks=bk,plot=F)$counts
obari <- g/h

yi <- seq((1/nbins)/2,1,1/nbins)

par(pty='s',las=1)
reliability.plot(yi,obari,h,titl="10 bins",legend.names="")
abline(h=obar)

#What can you conclude about these forecasts by examining
#the feature of the reliability diagram curve?



# Compute reliability, resolution and uncertainty components
# of the Brier score

n<-length(probfcsts)

reliab <- sum(h*((yi-obari)*2), na.rm=TRUE)/n
resol <- sum(h*((obari-obar)"2), na.rm=TRUE)/n
uncert<-obar*(1-obar)

bs<-reliab-resol+uncert

#How does the results above compare with those obtained
#with the verify function?



Discrimination

Conditioning of forecasts on observed outcomes

Addresses the question: Does the forecast
(probabilities) differ given different observed
outcomes? Or, can the forecasts distinguish
(discriminate or detect) an event from a non-event?

Example: Event (Positive SST anom. observed)
Non-event (Positive SST anom. not obs)

If the forecast is the same regardless of the outcome,
the forecasts cannot discriminate an event from a
non-event

Forecasts with no discrimination ability are useless
because the forecasts are the same regardless of
what happens



Important notes about
events and non-events

Example: event (precip. obs. in upper tercile)
non-event (precip. not obs. in upper tercile)

Events and non-events are complementary
Events can happen (occur) or not happen (not occur)

If fcst probability for an event to happen is 80% this
Indicates high confidence for the event to happen

If fcst probability for an event to happen is 20% this indicates
high confidence for the event not to happen

Will see that in ROC curve (used to assess discrimination or
distinction btw events and non-events):

a) high confidence that an event will happen will appear in
points located at the bottom left of ROC curve;

b) high confidence that an event will not happen will appear
In points located at the top right of ROC curve




Important notes about
events and non-events

* Asevents and non-events are binary (i.e have 2 possible outcomes)
the probability of correctly discriminating (distinguishing) and event
from a non-event is 50%

e Example:
- Lets say we have two years: 1990 and 1999
- We know in one year (1990) precip in upper tercile was observed
- We also know that in the other year (1999) precip in upper tercile
was not observed
- 1f In 1990 the fcst prob for precip in upper tercile was p=80%
and in 1999 the fcst prob for precip in upper tercile was p=10% then
we successfully discriminated btw the event and the non-event

* The ROC area will tell us the probability of successfully discriminating
an event from a non event. (How different fcst probilities are for
events and non events)



ROC: Relative operating characteristics

Measures discrimination (ability of forecasting system
to detect the event of interest)

Yes No Total
Yes a(Hit) b (False alarm) a+b
No ¢ (Miss) d (Correct rejection) c+d
Total a+c b+d atb+c+d=n

Hit rate=a/(a+c)

False alarm rate=b/(b+d)

ROC curve: plot of hit versus false-alarm rates for decreasing
prob. thresholds



ROC Curve

Hit Rate

0.0 —

0.0 02 04 06 0.8 1.0
False Alarm Rate
» The ROC curve is constructed by calculating the hit and false-alarm rates
for decreasing probability thresholds
» Area under ROC curve (A) is a measure of discrimination: A= 0.79 (prob. of
successfully discriminating a warm (SST>0) from a cold (SST<0) event)



ROC Curve
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» The ROC curve is constructed by calculating the hit and false-alarm rates
for decreasing probability thresholds

» Area under ROC curve (A) is a measure of discrimination: A= 0.79 (prob. of
successfully discriminating a warm (SST>0) from a cold (SST<0) event)




Exercise 2:

Read data file equatorialpacificsst.txt which contains
forecast probabilities for the event Eq. Pac. SST>0
and the corresponding binary observations
data<-read.table(“equatorialpacificsst.txt”)

#15t column contains forecast probabllities

#2"d column contains binary observations



Prob. forecasts conditioned/stratified

Forecast 0N observations
probability Pr(SST>0)

-

co
o

———— i
i S ——

Event
SST>0 obs

06
|

Non event
SST>0 not obs

04

02

0.0

Olgserved binary event X1

—> Forecasts do differ given different outcomes
—> Forecast system has discrimination (distinguish event from non-event)



Reproducing the previous plot

1) Stratify forecast probabilities p (1st column of data)
on observed (1) and not observed (0) binary events
(2nd column od data)

d1 #object containing strat of p on not observed event
> d1<-data|datal,2]==0,1]

d2 #object containing strat of p on observed event

> d2<-data|datal[,2]==1,1]

2) Produce a boxplot using the command

> boxplot(d1,d2,col=c(2,5),notch=T,names=c(0,1))



# extract
p<-0.9

only forecast/obs pairs with p >=0.9

# forecast events

f<-data[c
a<-sum(f

atal,1]>=p,]
,2]==1) #forecast and observed (hit)

b<-sum(f

,2]==0) #forecast and not observed (false alarm)

# not forecast events
g<-data[data[,1]<p,]

c<-sum(g[,2]==1) #not forecast and observed (miss)
d<-sum(g[,2]==0) #not fcst and not obs (correct rejection)
n<-a+b+c+d

hr<-a/(a+c)

far<-b/(b+d)



#Plot first point of the ROC curve

par(pty='s',las=1)
plot(far,hr,type="p",pch=16,xlim=c(0,1),ylim=c(0,1),xlab="Fals
e alarm rate",ylab="Hit rate")

abline(0,1)



#repeat the same procedure for p>=0.8

#extract only forecast/obs pairs with p >=0.8

p<-0.8

# forecast events

f<-data[c
a<-sum(f

atal,1]>=p,]
,2]==1) #forecast and observed (hit)

b<-sum(f

,2]==0) #forecast and not observed (false alarm)

# not forecast events
g<-data[datal[,1]<p,]

c<-sum(g[,2]==1) #not forecast and observed (miss)
d<-sum(g[,2]==0) #not fcst and not obs (correct rejection)
n<-a+b+c+d

hr<-a/(a+c)

far<-b/(b+d)



#Plot new point in the ROC curve
points(far,hr,pch=16)

#repeat the same procedure for p>=0.7, p>=0.6, p>=0.5,
#p>=0.4, p>=0.3, p>=0.2 and p>=0.1 adding the new points
#in the ROC curve. Try later to do this using a for loop.

#The area below the curve that joins all points (the ROC
#area) Is a forecast skill measure of discrimination.

#
#
#

ROC area va
ROC area va

ROC area va

ues ec
ues ec

ues ec

#discrimination.

ua
ua
ua

0.5 indicate no skill.
to 1 indicate perfect discrimination.
to O indicate perfectly bad



#Constructing the empirical ROC curve

#find unigue forecast probability values
p<-unique(data[,1])

#sort unique fcst prob values from largest to smallest
p<-rev(sort(p))

#define vectors to store hit and false-alarm rates
hr<-rep(NA,length(p)+2)

far<-rep(NA,length(p)+2)

#set first and last point in the ROC curve to (0,0) and (1,1)
hr[1]<-0

far[1]<-0

hr[length(p)+2]<-1

far[length(p)+2]<-1




#compute hit and false alarm rates for all fcst prob thresholds
for (i in 1:length(p){

f<-data[data[,1]>=p]i],] #forecast events

a<-sum(f[,2]==1) #hit

b<-sum(f[,2]==0) #false alarm

g<-data[data[,1]<pl[i],] # not forecast events
c<-sum(g[,2]==1) #miss

d<-sum(g[,2]==0) #correct rejection

hr[i+1]<-a/(a+c)

far[i+1]<-b/(b+d)

}

#plot empirical ROC curve

par(pty='s',las=1)

plot(far,hr,type="1" xlim=c(0,1),ylim=c(0,1),xlab="False alarm
rate",ylab="Hit rate")

abline(0,1)




#plot roc curve with verification package for comparison
x11()
roc.plot(data[,2],data[,1])

#compute area under empirical ROC curve
dif<-diff(far)
area<-sum(0.5*(hr[1:((length(hr)-1))]+hr[2:length(hr)])*dif)

#compute ROC area using the verification package
roc.area(datal,2],data[,1])

#The ROC skill score is defined as (2*ROC area)-1

#s0 that positive values indicate good discrimination skill
#and negative values indicate bad discrimination skill
rss<-2*area-1



